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A B S T R A C T

When creating mobile robots that operate autonomously, possibly
without any human supervision, accurate self-localisation is one of
the fundamental abilities such robots should possess. In conventional
Monte Carlo localisation, a probability distribution over a space of
possible hypotheses accommodates the inherent uncertainty in the po-
sition estimate, whereas bounded-error localisation provides a region
that is guaranteed to contain the robot. However, this guarantee is
accompanied by a constant probability over the confined region and
therefore, depending on its size, the information yield may not be
sufficient for certain practical applications. In this thesis, four new
hybrid localisation algorithms are proposed, combining probabilistic
filtering with non-linear bounded-error state estimation based on in-
terval analysis. A forward-backward contractor and the Set Inverter
via Interval Analysis are hybridised with a bootstrap filter and an
unscented particle filter, respectively. The four new algorithms are
applied to global localisation of an underwater robot, using simulated
distance measurements to distinguishable landmarks. As opposed to
previous hybrid methods found in the literature, the bounded-error
state estimate is not maintained throughout the whole estimation
process. Instead, it is only computed once in the beginning, when
solving the wake-up robot problem, and after kidnapping of the robot,
which drastically reduces the computational cost when compared to
existing algorithms. Evaluating the performance of the localisation
algorithms with different numbers of landmarks, it is shown that the
newly proposed algorithms can solve the wake-up robot problem as
well as the kidnapped robot problem more accurately than the two
conventional probabilistic filters.
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1
I N T R O D U C T I O N

For a long time, people have dreamt of building intelligent machines
to perform tedious, repetitive or dangerous tasks. Today, we call
these machines robots, derived from the Slavic word robota, meaning
servitude or drudgery [1]. For a mobile robot, in order to operate in its
environment, it is essential to know its position relative to an external
reference frame. The corresponding localisation problem constitutes
the most basic perceptual challenge in robotics and is described in
more detail below.

1.1 the global localisation problem

A scenario in which a robot is given a map of its environment, to
estimate its position relative to this map using its sensors, is commonly
known as the global localisation problem. In contrast, position tracking
denotes the process of continuously determining the robot’s position
relative to a known initial position. Since here the uncertainty is
confined to the region near the robot’s true position, tracking is a
local problem and easier than global localisation. When a robot has
to establish its own global position without prior knowledge, for
instance after having been carried to an arbitrary location before
being put to operation, this is referred to as the wake-up robot problem.
The related kidnapped robot problem, which forms another subclass
of global localisation problems, describes a situation where a well-
localised mobile robot is teleported to an arbitrary location without
being told. That is, the robot strongly believes itself to be somewhere
else at the time of the kidnapping. Solving the above problems under
varying circumstances using different sensory input represents a major
challenge in robotics and is of paramount importance for a successful
practical application of mobile robots.

1.1.1 Sensor Systems

In tackling the self-localisation problems described above, the fun-
damental choices of sensory information may be classified as those
obtained by proprioceptive sensors, such as wheel encoders or inertial
sensors, and exteroceptive sensors, such as cameras, laser scanners or
supersonic sensors. By means of the latter type of sensors, the robot
can sense landmarks, which denote any identifiable sensory perception
that has a known position with respect to a given global coordinate
system. In practice, proprioceptive methods alone fail after a short

1



2 introduction

time since they are impaired by incorrigible drift errors. For this
reason, a fusion of proprioceptive and exteroceptive information has
been widely and successfully used in mobile robotics [2].

1.1.2 Sensor Fusion

As noise-free sensors for measuring the position do not exist, the
position has to be inferred from the evolution of noisy sensor data
over time. The combination of information from multiple sensors
with the aim to increase the overall precision of the estimation of a
certain quantity of interest is termed sensor fusion. Raol [3] states the
following advantages of sensor fusion:

• Robust functional and operational performance is given, in case
of data loss from one sensor, due to redundancy provided by
multiple sensors.

• Enhanced confidence in the results inferred from the measure-
ment of one sensor, if they are confirmed by the measurement
of another sensor.

• With sensor fusion an arbitrary fine time resolution of measure-
ments is possible, whereas single sensors need a finite time to
transmit measurements and so limit the frequency of measure-
ments.

• One sensor might be, to some extent, better in a certain state
of the measured process and thus, by fusing multiple sensor
signals, a satisfactory accuracy among all states of a process may
be attained.

As we shall see in Chapter 2, in the context of self-localisation, digital
filters can be used to fuse information from multiple sensors with
additional a priori information about the position of a mobile robot.

1.2 motivation

Robotics has enormous potential to change the world for the better,
beckoning humanity to tap into it. Releasing mankind from mundane
and repetitive tasks frees time and energy and thus allows us to focus
on the more interpersonal and creative aspects of life. Enhanced
efficiency enables us to engage with higher order functions and to
devote our time to further improving quality of life. Automating
dangerous tasks protects human lives and renders operation under
inhuman conditions possible in the first place. Robotics’ potential to
make a positive, lasting impact on the world was the motivation for
this work.



1.3 state of the art 3

1.3 state of the art

Mobile robots have successfully been applied to search and rescue
[4–8], monitoring and surveillance [9], autonomous locomotion [10,
11], and education [12]. When aiming at creating mobile robots that
operate autonomously and safely in these scenarios, possibly without
any human supervision, accurate self-localisation is one of the funda-
mental abilities any mobile robot should possess. In order to perform
robust localisation, many novel methods have emerged in the past
few years, based both on probability theory and interval analysis.
Nevertheless, self-localisation remains a rich and highly active area of
research to this day.

1.3.1 Probabilistic Localisation

Taking a probabilistic approach to localisation, uncertainty is represen-
ted explicitly, using the calculus of probability theory. In probabilistic
localisation a probability distribution over a space of possible hypo-
theses accommodates the inherent uncertainty in a position estimate.
This uncertainty originates from the above-mentioned measurement
noise and other influences discussed in more detail in the following
chapter. In the literature, there are numerous probabilistic methods,
applied to both global localisation as well as tracking. Besides a mani-
fold of particle filters [13–16], Kalman filters [15, 17] have been used
successfully.

1.3.2 Bounded-Error Localisation

Naturally, the probabilistic approach does not ensure a correct solution
and in fact probabilistic estimators may diverge under certain circum-
stances. Hence, several methods based on interval computations have
been developed to tackle the local and global localisation problem
[18–26]. As opposed to the probabilistic approach, which provides a
point estimate of the position, the rationale of the so-called bounded-
error localisation is to determine a region that is guaranteed to contain
the robot’s position. Here, however, the guarantee is accompanied
by a constant probability over the confined region and in practice the
information yield may not be sufficient.

1.3.3 Hybrid Localisation

In addition to stand-alone probabilistic or bounded-error localisation
methods, there have been attempts to combine both in order to mit-
igate their respective shortcomings and thus improve the localisation
accuracy. Neuland et al. [27] used a particle filter in combination
with a set-membership method to restrict the spread of particles to
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regions of the search space that are associated with a high observa-
tion likelihood. In [28] they used a set-inversion method instead and
reported an increase in the estimation accuracy in return for higher
computational cost in both cases.

Nicola [29] combined a set-membership method with a Kalman filter
to obtain a reliable and precise algorithm for simultaneous localisation
and mapping of underwater robots. Ashokaraj et al. proposed sensor-
based robot localisation using an extended Kalman filter [30] as well as
an unscented Kalman filter [31] in combination with interval analysis
to bound the estimation error in the presence of landmarks. If the
position estimate of the Kalman filter lay outside of the feasible region
it was corrected to the geometrically closest point on the boundary. In
[32], multiple interval robot positions were processed using a fuzzy
logic weighted average algorithm to obtain a single robot interval
position. The error of an unscented Kalman filter position estimate
was then bounded by the interval robot position as described above.
In [33], Ashokaraj et al. used ultrasonic sensors with limited range and
corrected the mean and covariance of an unscented Kalman filter by
means of the interval estimate. All their methods resulted in a more
accurate position estimate.

1.4 contributions

As will be shown in the following chapter, in Monte Carlo localisation
there is a natural dilemma between accuracy and computational cost,
which can be balanced by the number of hypotheses used, also referred
to as particles. Both bounded-error state estimation as well as an
unscented Kalman filter can be utilised in order to move particles to
regions of the state space that are associated with a high observation
likelihood. As no particles are wasted in unlikely regions, with a
finite number of particles the particle density in likely regions can be
increased and consequently the localisation accuracy can be improved.
Previous hybrid localisation methods successfully combined bounded-
error state estimation with a bootstrap particle filter. However, it
is shown experimentally below that when too little information in
terms of visible landmarks are available, the hybridisation of both
bounded-error state estimation and an unscented particle filter can
further improve the estimation accuracy.

A particle filter and an unscented particle filter is combined with
two bounded-error estimators, namely a forward-backward contractor
and the Set Inverter via Interval Analysis, respectively. The four res-
ulting new hybrid localisation algorithms and the two conventional
probabilistic filters are applied in three different simulated landmark-
based global localisation scenarios. While the hybrid localisation
methods in [27] and [28] maintain both a bootstrap particle filter es-
timate and a bounded-error state estimate at each time step, in order
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to bound the estimation error of the particle filter, it is shown that
the localisation accuracy particularly benefits from the bounded-error
state estimate in the very first iterations or shortly after kidnapping of
the robot, respectively. The bounded-error state estimate is therefore
not maintained throughout the whole estimation process. Instead, the
satisfaction of given constraints based on geometrical considerations of
the environment are tested, in order to bound the estimation error and
detect kidnapping. In the latter case, the bounded-error state estima-
tion is triggered again to repeat the global localisation process over
the entire map. The rationale behind the newly proposed algorithms,
which are explained in detail in Chapter 3, is to drastically reduce
computational cost when compared to previous methods while pre-
serving the benefits of the hybrid approach and therefore improve the
estimation accuracy when compared to conventional unconstrained
probabilistic filtering.

1.5 methodology

In the following chapter, stochastic filtering theory is reviewed in
detail, beginning with a statement of the problem and its conceptual
solution, the Bayesian filter. Under linear-quadratic-Gaussian circum-
stances, the Kalman filter represents an optimal solution within the
Bayesian framework. As the linear scenario is hardly found in practice,
suboptimal non-linear filtering techniques such as the extended Kal-
man filter and the unscented Kalman filter are extensively investigated.
Subsequently, we focus our attention on the sequential Monte Carlo
method, including importance sampling and resampling. As another
representative of the Bayesian framework, the generic particle filter
assumes a non-linear, non-Gaussian model. Using the transition prior
probability distribution as a proposal distribution yields the bootstrap
filter, while the unscented particle filter represents a more elaborate
estimator that uses an unscented Kalman filter in order to generate
better proposal distributions. At the end of Chapter 2, we introduce
basic concepts of interval analysis and two algorithms that can be ap-
plied to bounded-error localisation. Chapter 3 elaborates on the four
newly proposed localisation algorithms. The system and measure-
ment models of both the probabilistic and bounded-error estimators
are described and the incorporation of constraints into the inherently
unconstraint bayesian filters is explained. In Chapter 4 the four new
hybrid localisation algorithms and the two conventional probabilistic
filters are put to the test in three different simulated landmark-based
global localisation scenarios. A detailed explanation of the experi-
ments is followed by the presentation of the results. Finally, in Chapter
5 we conclude and present potential future work.





2
T H E O R E T I C A L B A C K G R O U N D

Conceived in general terms, a filter is a device for removing unwanted
components of a mixture. In accordance with this definition, in the
technical sphere, a filter refers to a system designed to extract informa-
tion about a quantity of interest, using noisy observations of a process.
That is, a filter delivers an estimate of the variables of principal interest,
which is why it is also called an estimator.

In the next section, we will present the filtering problem in a formal
manner, followed by a comprehensive introduction of a generic frame-
work to cope with it, the Bayesian filter. The Kalman filter presented in
Section 2.3.1 is suitable for linear models and additive white Gaussian
noise. We deliberately chose to start from this special-case scenario,
generalising step by step, as the Kalman filter is an easy to com-
prehend, straight forward solution to the filtering problem and its
mechanism and underlying terminology is essential for the remainder
of this thesis. In Section 2.3.2, we will introduce the extended Kalman
filter, which uses linearisation around the latest state estimate in or-
der to cope with non-linear models. A higher-order approximation
of non-linear models is obtained by the unscented Kalman filter de-
scribed in Section 2.3.3. After elaborating on sequential Monte Carlo
simulation, including sequential importance sampling in Section 2.4.1
and resampling in Section 2.4.2, we focus on the importance of the
proposal distribution in Section 2.4.3. In order to drop the Gaussian
assumption and allow for arbitrary, multi-modal distributions, we
introduce the generic particle filter in Section 2.5.1, followed by two
concrete implementations, namely the bootstrap filter in Section 2.5.2
and the unscented particle filter in Section 2.5.3. Finally, we will close
this chapter with basic concepts of interval analysis in Section 2.6.1
including the notion of constraint satisfaction problems and set inver-
sion problems in Sections 2.6.2 and 2.6.4, respectively. Both types of
problems will be encountered in the following Chapter 3 and will be
tackled with either the HC4 contractor described in Section 2.6.3 or the
Set Inverter via Interval Analysis presented in Section 2.6.5.

2.1 the filtering problem

Consider, as an example involving filter theory, the discrete-time
dynamical system depicted in Figure 1. The desired state vector of the
system, xk, at the discrete time step k, is usually hidden and can only
be observed by indirect measurements zk that are a function of xk and
subject to noise. Equally, the equation describing the evolution of the

7



8 theoretical background

Dynamical
system

System
errors

Measuring
system

Measurement
errors

Estimator

Prior
information

State
xk

Observation
zk

State
estimate

x̂k

Figure 1: Block diagram depicting the components involved in state estima-
tion of a discrete-time dynamical system [34].

state xk is usually subject to errors, caused by effects not accounted
for in the model. The dynamical system may be an underwater
robot, in which case the elements of the state vector are constituted
by its position and velocity, while the measuring system may be an
inertial measurement unit producing the observation vector zk. The
requirement of the filter is to deliver a reliable estimate x̂k of the actual
state, by taking the measurement as well as prior information into
account.

Assuming a stationary stochastic process with known statistical
parameters as the mean and correlation function of the useful signal
and the unwanted additive noise, the solution to the filtering problem
is commonly known as the Wiener filter. Yet, since the Wiener filter
requires a priori information about the statistics of the data to be
processed, it may not be optimal for non-stationary processes. For such
an environment, in which the statistics are time-varying, it needs a
filter that constantly adapts its parameters to optimise its output. A so-
called adaptive filter is a self-designing system that relies, in contrast to
the non-recursive Wiener filter, on a recursive algorithm, allowing the
filter to perform satisfactorily, even if there is no complete knowledge
of the relevant signal characteristics. Provided the variations in the
statistics of the input data are sufficiently slow, the algorithm can track
time variations and is thus suitable for non-stationary environments.
In a stationary environment it converges to the optimum Wiener
solution in some statistical sense after successive iterations.

Generic State-space Model

Now, let us consider the generic stochastic filtering problem in a
dynamic state-space form:

xk = φk−1(xk−1,uk−1,wk−1), k > 0 . (1)

Here, xk ∈ Rnx is the state vector to be estimated, k denotes the time
step, and φk−1 : Rnx ×Rnu ×Rnw → Rnx is the known, possibly
non-linear state transition function at time k − 1. The control vec-
tor uk−1 ∈ Rnu represents an exogenous input to the system and
wk−1 ∈ Rnw represents a white noise sequence, usually referred to
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φk−1 hk
xk

z−1Inz

xk−1

wk−1

uk−1

vk

zk

Figure 2: Block diagram depicting a non-linear discrete-time dynamical sys-
tem, its internal state xk, and its observation zk.

as the process noise. The state vector is related to the observation or
measurement of the process, zk ∈ Rnz , by

zk = hk(xk, vk), k > 0 , (2)

where hk : Rnx ×Rnv → Rnz is a known, possibly non-linear trans-
formation from state variables to measurement variables and vk ∈ Rnv

represents a white noise sequence, usually referred to as the measure-
ment noise. Note that here we do not assume additivity of the noise
sources. A block diagram of the non-linear discrete-time dynamic
system and its observation is depicted in Figure 2, where z−1 denotes
the unit-delay and Inx the nx ×nx identity matrix.

2.2 recursive bayesian estimation

Provided the system dynamics model and the measurement model
can be expressed in a probabilistic form, a Bayesian approach to
solving the filtering problem may be adopted. The formal Bayesian
filter constitutes a general unifying framework for sequential state
estimation, at least in a conceptual sense [35]. We will only go into
detail as far as necessary for the treatment of the subject matter of this
thesis. A complete mathematical derivation of the Bayesian filter can
be found in [36].

The system model given by Equation 1 implicitly assumes that
the state xk depends only on the immediate past state xk−1 and the
control input uk−1. Thus, it defines a first-order discrete Markov
process and has an equivalent probabilistic description given by the
conditional probability distribution p(xk | xk−1,uk−1), with the initial
state distributed according to

p(x0 | z0) = p(x0) , (3)

where z0 denotes the empty measurement.
Likewise, the measurement model given by Equation 2 has an equi-

valent probabilistic description given by the conditional probability
density p(zk | xk). Here, we implicitly assume that if we knew the
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state xk and were to predict the measurement yk, no past measure-
ment or control input would provide us additional information. This
conditional independence given the state, the Markov property, and
the fact that we cannot observe the state directly let us describe our
system using the hidden Markov model depicted in Figure 3. In the
remainder of this chapter, we will use the notation below:

Xk sequence of states, denoting {xi}
k
i=0.

Uk sequence of control inputs, denoting {ui}
k
i=0.

Zk sequence of observations, denoting {zi}
k
i=1.

p(xk |Zk−1,Uk−1) predictive distribution of the state xk at the cur-
rent time k, given the entire sequence of ob-
servations and the entire sequence of control
inputs up to and including time k− 1.

p(xk |Zk,Uk−1) posterior distribution of the current state xk,
given the entire sequence of observations up
to and including the current time k and the
entire sequence of control inputs up to and
including time k− 1; this distribution is com-
monly referred to as simply the posterior.

p(xk | xk−1,uk−1) state-transition distribution of the current state
xk, given the immediate past state xk−1 and
control input uk−1; this distribution is defined
in terms of the system model and is commonly
referred to as the transition prior or simply the
prior.

p(zk | xk) likelihood function of the current observation
zk, given the current state xk. This function is
defined in terms of the observation model.

Now, the aim of the Bayesian filter is to determine the posterior
distribution p(xk |Zk,Uk−1), which embodies the entire knowledge
that we have about the state xk at time k, after being given all the con-
trol inputs Uk−1 and having received the entire observation sequence
Zk. Given this probability distribution, we can determine an optimal
estimator under a specified performance criterion, as for instance
the minimum mean-squared error estimator. Then, the optimal state
estimate x̂k is determined by the mean of the posterior probability
distribution,

x̂k = E
[
xk |Zk,Uk−1

]
=

∫
xkp(xk |Zk,Uk−1)dxk . (4)
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Figure 3: Hidden Markov model of a non-linear discrete-time dynamical
system, characterising the evolution of the control inputs, states,
and observations.

In order to assess the confidence in the estimated state, we compute
the covariance matrix as

Pk = E
[
(xk − x̂k)(xk − x̂k)

T
]

=

∫
(xk − x̂k)(xk − x̂k)

Tp(xk |Zk,Uk−1)dxk .
(5)

The posterior distribution can be constructed recursively in two
steps, namely by a prediction and an update operation:

1. Time update: given the observation sequence Zk−1 and the con-
trol sequence Uk−2, the predictive distribution is computed
according to the Chapman-Kolmogorov identity:

p(xk |Zk−1,Uk−1)︸ ︷︷ ︸
Predictive

distribution

=

∫
p(xk | xk−1,Zk−1,Uk−1)

· p(xk−1 |Zk−1,Uk−1)dxk−1

=

∫
p(xk | xk−1,uk−1)︸ ︷︷ ︸

Prior

·p(xk−1 |Zk−1,Uk−2)︸ ︷︷ ︸
Old posterior

dxk−1 .

(6)

Here, we used the Markov property:

p(xk | xk−1,Zk−1,Uk−1) = p(xk | xk−1,uk−1) , (7)

and the fact that the old posterior is conditionally independent
of future control inputs, so that the following holds:

p(xk−1 |Zk−1,Uk−1) = p(xk−1 |Zk−1,Uk−2) . (8)
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2. Measurement update: exploiting the current observation zk and
applying Bayes’ theorem, we can compute the updated posterior
as follows:

p(xk |Zk,Uk−1)︸ ︷︷ ︸
Updated
posterior

= p(xk | zk,Zk−1,Uk−1)

=
p(zk | xk,Zk−1,Uk−1)p(xk |Zk−1,Uk−1)

p(zk |Zk−1,Uk−1)

= p(zk | xk)︸ ︷︷ ︸
Likelihood

function

p(xk |Zk−1,Uk−1)︸ ︷︷ ︸
Predictive

distribution

η−1 ,

(9)

where the normalising constant η is given by

η = p(zk |Zk−1,Uk−1)

=

∫
p(zk | xk)p(xk |Zk−1,Uk−1)dxk .

(10)

Note how in the last transformation step of Equation 9 we used
conditional independence given the state, that is

p(zk | xk,Zk−1,Uk−1) = p(zk | xk) . (11)

The Bayesian filter is the optimal conceptual solution to the re-
cursive estimation problem. However, due to the multi-dimensional
integration, a closed-form algorithm can only be obtained in a few
special cases. If the probability distributions p(x0), p(xk | xk−1,uk−1),
and p(zk | xk) are Gaussian and the dynamic system is described by
a linear model, the posterior distribution remains Gaussian and the
Equations 6 and 9 reduce to the celebrated Kalman filter, which is de-
scribed in the following section. Figure 4 compares different Bayesian
filters that are discussed in further detail below.

2.3 kalman filters

The Kalman filter provides an efficient means to analytically compute
the evolving sequence of posterior distributions of a linear dynamic
system that is perturbed by additive white Gaussian noise [37]. Named
after Rudolf E. Kalman, who 1960 published his famous paper describ-
ing a recursive solution to the discrete-data linear filtering problem
[38], the Kalman filter has been the subject of extensive research, which
is due, to a large extent, to the advances in digital computing [39]. The
Kalman filter and its many variations find applications in radar track-
ing, navigation, and orientation estimation, among others. Zarchan
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Figure 4: Comparison of different Bayesian filters used in self-localisation of
mobile robots. AWGN denotes additive white Gaussian noise.

and Musoff stated in [40]: “With the possible exception of the fast
Fourier transform, Kalman filtering is probably the most important
algorithmic technique ever devised.” We will now proceed to form-
ally introduce the Kalman filter, followed by two of its variations for
non-linear models in the subsequent sections.

2.3.1 The Kalman Filter

Let xk ∈ Rnx be the state vector of a discrete-time controlled process,
governed by the linear stochastic difference equation

xk =Φk−1xk−1 +Bk−1uk−1 +wk−1 , (12)

where the index k again denotes discrete time. The nx × nx state
transition matrix Φk−1 relates the state at the previous time step k− 1
to the state at the current step k and the nx ×nu matrix Bk−1 relates
the known, optional control input uk−1 ∈ Rnu to the state xk. Let
zk ∈ Rnz denote the measurement vector of this process, which is
related to the state by the linear measurement model

zk = Hkxk + vk , (13)

where the nz ×nx measurement matrix Hk relates the state xk to the
measurement zk. The nx × 1 vector wk and the nz × 1 vector vk in
Equation 12 and 13 represent the additive process and measurement
noise, respectively, modelled as zero-mean, Gaussian white noise,

wk ∼ N(0,Qk) , (14)

vk ∼ N(0,Rk) , (15)



14 theoretical background

∑
Bk−1 Hk

Φk−1

∑

∑
Kk

Hk Φk−1 z−1Inz

∑

+

xk

z−1Inz

xk−1

+
+

zk
+

wk−1

+

uk−1 vk

+

−

+

x̂k|k−1
x̂k−1

+

x̂k

Kalman filter

Figure 5: Block diagram depicting the relation between a linear, discrete-time
dynamical system, its observation zk, and the Kalman filter.

with the process noise covariance matrix Qk and the measurement noise
covariance matrix Rk.

We define the vector x̂k|k−1 ∈ Rnx as the a priori state estimate,
representing knowledge of the process prior to step k, given by

x̂k|k−1 =Φk−1x̂k−1 +Bk−1uk−1 , (16)

and x̂k ∈ Rnx as the a posteriori state estimate at step k, after having
received the measurement zk, given by

x̂k = x̂k|k−1 +Kk
(
zk −Hkx̂k|k−1

)
. (17)

The term [zk −Hkx̂k|k−1] is called the measurement innovation or
residual. It reflects the discordance between the predicted measurement
Hkx̂k|k−1 and the actual measurement zk. The nx ×nz matrix Kk is
termed the Kalman gain and is given by

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1 , (18)

with the a priori error covariance matrix

Pk|k−1 =Φk−1Pk−1Φ
T
k−1 +Qk−1 (19)

and the a posteriori error covariance matrix

Pk =
(
In −KkHk

)
Pk|k−1 . (20)

Note that the Gaussian posterior distribution is fully determined by
its mean x̂k and covariance Pk.

Figure 5 illustrates the relation of the Kalman filter to the linear
discrete-time dynamical system, where z−1 denotes the unit-delay
and Inx the nx × nx identity matrix. In accordance with the formal
Bayesian filter, the Kalman filter equations can be divided into two
groups: time update Equations 16, 19 and measurement update Equations
17 , 18, and 20, as shown in Figure 6, which depicts the ‘predict
and correct’ behaviour of the filter algorithm. After an initialisation
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Initialisation

x̂0 = E[x0],P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

Time update

Compute a priori state estimate:
x̂k|k−1 =Φk−1x̂k−1 +Bk−1uk−1

Compute a priori error covariance:
Pk|k−1 =Φk−1Pk−1Φ

T
k−1 +Qk−1

Measurement update

Compute Kalman gain:
Kk = Pk|k−1H

T
k

(
HkPk|k−1H

T
k +Rk

)−1

Compute a posteriori state estimate:
x̂k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)

Update error covariance:
Pk =

(
In −KkHk

)
Pk|k−1

Output

Figure 6: Operation cycle of the Kalman filter, illustrating its ‘predict and
correct’ behaviour.

step, the time update and measurement update steps are carried out
recursively at every time step.

The Kalman filter represents an optimal solution to the recursive
Bayesian state estimation problem but assumes a linear model and
Gaussian noise. Since for many practical problems these assump-
tions do not hold, a variety of state estimators have been proposed
to approximate solutions to the non-linear, possibly non-Gaussian
state estimation problem, which has shown to be difficult to solve
analytically. An important representative of this class of filters is the
extended Kalman filter.

2.3.2 The Extended Kalman Filter

The Kalman filter may be modified so as to make it applicable to
the state estimation of systems with non-linear state dynamics, that is
systems that can be described by a model of the following form:

xk = φk−1(xk−1,uk−1) +wk−1, wk ∼ N(0,Qk) . (21)
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The state transition function φk−1 : Rnx ×Rnu → Rnx relates the
state at the previous time step k− 1 to the current time step k, taking
into account the exogenous control input uk−1. The possibly non-
linear transformation from state variables to measurement variables,
hk : Rnx → Rnz , is given by

zk = hk(xk) + vk, vk ∼ N(0,Rk) . (22)

Note that, as opposed to the generic state-space model given by
Equation 1 and 2, again we assume additive zero-mean white Gaussian
noise in both Equations 21 and 22.

Linearisation

Some non-linear problems can be deemed quasi-linear, which means
that a variation of the respective non-linear functions φk and hk are
predominantly linear about a value x0. Assuming that φk and hk are
differentiable at x0, they can be approximated as follows:

φk(x0 + dx,u) ≈ φk(x0,u) + dx
∂φk(x,u)

∂x

∣∣∣∣
x=x0,u

, (23)

hk(x0 + dx) ≈ hk(x0) + dx
∂hk(x)

∂x

∣∣∣∣
x=x0

. (24)

A first-order Taylor series expansion of the state-space model at each
time instant around the most recent state estimate allows us to use the
standard Kalman filter equations stated in Section 2.3.1. The resulting
filter is referred to as the extended Kalman filter (EKF). It linearises the
functions φk−1 and hk using their respective Jacobian matrices

Φ
[1]
k−1 =

∂φk−1(x,u)
∂x

∣∣∣∣
x=x̂k−1,u=uk−1

(25)

and

H
[1]
k =

∂hk(x)

∂x

∣∣∣∣
x=x̂k|k−1

, (26)

where the superscript [1] denotes the first-order approximation. The
ij-th entry of Φ[1]

k−1 is equal to the partial derivative of the i-th com-
ponent of φk−1(x) with respect to the j-th component of x. The
derivatives are evaluated at x = x̂k−1 and u = uk−1. Likewise, the ij-
th entry of H[1]

k is equal to the partial derivative of the i-th component
of hk(x) with respect to the j-th component of x. The derivatives are
evaluated at x = x̂k|k−1.
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Figure 7: Block diagram depicting the relation between a non-linear discrete-
time dynamical system, its observation zk, and the extended Kal-
man filter.

Extended Kalman Filter Equations

In structure similar to the Kalman filter Equations 16 and 17, the a
priori state estimate is given by

x̂k|k−1 = φk−1(xk−1,uk−1) (27)

and the a posteriori estimate, conditioned on the current measurement,
is given by

x̂k = x̂k|k−1 +Kk
(
zk −hk(x̂k|k−1)

)
. (28)

The corresponding a priori error covariance matrix Pk|k−1, the Kalman
gain Kk, and the a posteriori covariance matrix Pk are computed as
follows:

Pk|k−1 =Φ
[1]
k−1Pk−1Φ

[1]T
k−1 +Qk−1 , (29)

Kk = Pk|k−1H
[1]T
k

(
H

[1]
k Pk|k−1H

[1]T
k +Rk

)−1 , (30)

Pk =
(
In −KkH

[1]
k

)
Pk|k−1 . (31)

Figure 7 illustrates the relation of the extended Kalman filter to the
non-linear discrete-time dynamical system, where z−1 denotes the
unit-delay and Inx the nx × nx identity matrix. Figure 8 illustrates
the ‘predict and correct’ behaviour of the extended Kalman filter
algorithm. After an initialisation step, the time update and measurement
update steps are carried out recursively at every time step. In order to
linearise the state-space model at each time instant around the most
recent state estimate, additionally, the Jacobian matrices have to be
computed, which can prove to be computationally demanding for
high dimensional systems.
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Initialisation

x̂0 = E[x0],P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

Time update

Compute a priori state estimate:
x̂k|k−1 = φk−1(xk−1,uk−1)

Compute Jacobian matrix:
Φ

[1]
k−1 =

∂φk−1(x,u)
∂x

∣∣∣
x=x̂k−1,u=uk−1

Compute a priori error covariance:
Pk|k−1 =Φ

[1]
k−1Pk−1Φ

[1]T
k−1 +Qk−1

Measurement update

Compute Jacobian matrix:
H

[1]
k =

∂hk(x)
∂x

∣∣∣
x=x̂k|k−1

Compute Kalman gain:
Kk = Pk|k−1H

[1]T
k

(
H

[1]
k Pk|k−1H

[1]T
k +Rk

)−1

Compute a posteriori state estimate:
x̂k = x̂k|k−1 +Kk

(
zk −hk(x̂k|k−1)

)

Update error covariance:
Pk =

(
In −KkH

[1]
k

)
Pk|k−1

Output

Figure 8: Operation cycle of the extended Kalman filter, illustrating its ‘pre-
dict and correct’ behaviour.

Extended Kalman filtering is commonly used and was, in fact,
the first successful application of the Kalman filter [41]. Unlike its
linear counterpart, the extended Kalman filter may not necessarily be
an optimal estimator. Owing to its local linearisation the EKF may
quickly diverge if the model is highly non-linear. This limitation may
be overcome using a higher-order approximation, which characterises
the unscented Kalman filter described in the following section.

2.3.3 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is a derivative-free state estimation
approach first proposed by Julier and Uhlmann in [42] and further
developed by Wan and Van Der Merwe in [43]. The Gaussian state
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distribution is represented using a minimal set of carefully chosen
sample points around the mean, called sigma points, which capture the
true mean and covariance of the process. When propagated through
the non-linear system, the sigma points capture the posterior mean
and covariance accurate to the second-order Taylor polynomial for
any non-linearity [44]. Whilst providing superior performance, the
computational complexity of the UKF is the same order as that of
the EKF. In the following section, we will introduce the underlying
unscented transformation. A comprehensive description including
an extension of the unscented Kalman filter to a broader class of
estimation problems can be found in [45].

Unscented Transformation

The unscented transformation [46] and scaled unscented transformation
[47] was developed by Julier and Uhlmann and is motivated by their
following intuition: “With a fixed number of parameters it should be
easier to approximate a Gaussian distribution than it is to approximate
an arbitrary nonlinear function.” Thus, the continuous Gaussian
distribution is approximated using a discrete distribution having the
same first and second-order moments.

Given an n-dimensional Gaussian random variable x, with mean x̄
and covariance Px, we represent its distribution using an ensemble X

of 2n+ 1 sigma points Xi, with

X0 = x̄ , (32)

Xi = x̄+
(√

(n+ λ)Px

)
i
, i ∈ {1, . . . ,n} , (33)

Xi = x̄−
(√

(n+ λ)Px

)
i−n

, i ∈ {n+ 1, . . . , 2n} , (34)

where
(√

(n+ λ)Px

)
i

is the i-th column of the matrix square root of
(n+ λ)Px, obtained, for instance, by a Cholesky decomposition. The
scaling parameter λ is given by

λ = α2(n+ κ) −n, α, κ ∈ R, 0 6 α 6 1, κ > 1 , (35)

in which α determines the spread of the sigma points around the mean
[48] and κ > 1 guarantees positive semi-definiteness of the covariance
matrix [49]. According to [45], typical recommendations are κ = 0 and
10−4 6 α 6 1.

In order to compute an estimate of the mean and covariance of anm-
dimensional random variable y, which is related to x by a non-linear
transformation g : Rn → Rm, so that

y = g(x) , (36)



20 theoretical background

Monte Carlo Simulation

Linearisation

Unscented Transformation

y(i) = g
(
x(i)

)

covariance

mean

sample mean

sample covariance

ŷ = g(x̄)

Py = G[1]PxG
[1]T

ŷ

sigma points Xi

Yi = g(Xi)

Py ≈
∑2n
i=0W

(c)
i

(
Yi − ȳ

)(
Yi − ȳ

)T

ȳ ≈∑2n
i=0W

(m)
i Yi

Figure 9: The unscented transformation in comparison with Monte Carlo
sampling and linearisation about the mean [45]. Above, a cloud{
x(i)
}N
i=1

ofN = 200 samples drawn from a two-dimensional Gaus-
sian distribution is propagated individually through a highly non-
linear function g. After the transformation the empirical sample
mean and covariance is computed, respectively. In the middle, the
mean x̄ is propagated through g to obtain an estimate ŷ of the true
mean ȳ, and the covariance is approximated through a linearisation
of g about x̄, using its Jacobian evaluated at x̄, which is denoted
by G[1]. Below, the set of sigma points

{
Xi
}5
i=1

capturing the true
mean and covariance of the distribution of x are transformed inde-
pendently and the mean and covariance is estimated, respectively.
As can be seen, the result of the unscented transformation approx-
imates the true mean and covariance better than the linearisation
approach.
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the sigma points Xi ∈ X are independently propagated through g,

Yi = g
(
Xi
)
, i ∈ {0, . . . , 2n} , (37)

to obtain a set Y of transformed sigma points Yi.
The mean ȳ and the covariance Py of the random variable y are

approximated as the weighted sample mean and covariance of the
posterior sigma points, respectively,

ȳ ≈
2n∑

i=0

W
(m)
i Yi , (38)

Py ≈
2n∑

i=0

W
(c)
i

(
Yi − ȳ

)(
Yi − ȳ

)T . (39)

The weights for the mean, W(m)
i , and for the covariance, W(c)

i , are
given by

W
(m)
0 =

λ

n+ λ
, (40)

W
(c)
0 =

λ

n+ λ
+ (1−α2 +β) , (41)

W
(m)
i =W

(c)
i =

1

2(n+ λ)
, i ∈ {1, . . . , 2n} . (42)

The real parameter β is used to incorporate information about the
probability distribution of x, where β = 2 is optimal if the distribution
is Gaussian [50].

Figure 9 shows the unscented transformation for a two-dimensional
random vector in comparison with Monto-Carlo sampling, which will
be introduced in detail in Section 2.4, and the linearisation approach
used by the extended Kalman filter. Note that only five sigma points
are required to capture the mean and covariance of the distribution of
x. The mean and covariance of the independently transformed sigma
points approximate the true mean and covariance up to the second or-
der. Julier and Uhlmann mention the following significant advantages
of the unscented transformation compared to the linearisation used in
the EKF:

• It is not necessary to compute Jacobians.

• In the prediction stage only standard linear algebra operations
like matrix square roots, outer products, and matrix and vector
summations are required.

• The number of computations, including an efficient computation
of the matrix square root, scale with dimensions at the same rate
as linearisation.
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• Constraints can be seamlessly incorporated by applying them to
each of the projected sigma points Yi.

Unscented Kalman Filter Equations

Given a discrete-time dynamic process and its ovservation governed
by Equation 21 and 22, respectively, at each time step k we compute
the set of 2nx + 1 sigma points using the old posterior mean x̂k−1 and
covariance Pk−1,

X0,k−1 = x̂k−1 , (43)

Xi,k−1 = x̂k−1 + γ
(√
Pk−1

)
i
, i ∈ {1, . . . ,nx} , (44)

Xi,k−1 = x̂k−1 − γ
(√
Pk−1

)
i−n

, i ∈ {nx + 1, . . . , 2nx} , (45)

with

γ =
√

(nx + λ) . (46)

For the sake of brevity, in the following, the entire set of sigma points
is denoted as

Xk−1 =
{
X0,k−1,X1,k−1, . . . ,X2nx,k−1

}

=
{
X0,k−1

}
∪
{
X1,k−1, . . . ,Xnx,k−1

}

∪
{
Xnx+1,k−1, . . . ,X2nx,k−1

}

=
{
x̂k−1, x̂k−1 + γ

√
Pk−1, x̂k−1 − γ

√
Pk−1

}
.

(47)

Now we propagate the sigma points individually, taking into ac-
count the control input uk−1, to obtain the set of transformed sigma
points Xk|k−1. Again, more succinctly we write

Xk|k−1 = φk−1
(
Xk−1,uk−1

)
. (48)

The a priori state estimate is computed as the weighted sample mean

x̂k|k−1 =

2n∑

i=0

W
(m)
i Xi,k|k−1 (49)

and the a priori error covariance matrix as

Pk|k−1 =

2n∑

i=0

W
(c)
i

(
Xi,k|k−1 − x̂k|k−1

)(
Xi,k|k−1 − x̂k|k−1

)T
+Qk .

(50)
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where Qk again denotes the process noise covariance matrix. Trans-
forming the a priori sigma points individually using the measurement
function hk of Equation 22,

Zk|k−1 = hk(Xk|k−1) , (51)

lets us compute the predicted measurement as the weighted sample
mean of the transformed sigma points,

ẑk|k−1 =

2n∑

i=0

W
(m)
i Zi,k|k−1, Zi,k|k−1 ∈ Zk|k−1 . (52)

Now, we can compute the innovation covariance matrix

Pz̃kz̃k =

2n∑

i=0

W
(c)
i

(
Zi,k|k−1 − ẑk|k−1

)(
Zi,k|k−1 − ẑk|k−1

)T
+Rk (53)

and the cross covariance matrix as

Px̃kz̃k =

2n∑

i=0

W
(c)
i

(
Xi,k|k−1 − x̂k|k−1

)(
Zi,k|k−1 − ẑk|k−1

)T , (54)

where Rk denotes the measurement noise covariance matrix. All
weights Wi in Equations 49 – 54 are computed according to Equations
40 – 42. Given the covariance and cross covariance matrix, we can
compute the Kalman gain as

Kk = Px̃kz̃kP
−1
zkzk

. (55)

As with the Kalman filter, the updated state estimate is the predicted
state plus the innovation weighted by the Kalman gain,

x̂k = x̂k|k−1 +Kk
(
zk − ẑk|k−1

)
, (56)

and the updated error covariance is the a priori error covariance minus
the predicted measurement covariance, weighted by the Kalman gain,

Pk = Pk|k−1 −KkPz̃kz̃kK
T
k . (57)

Figure 10 shows the entire unscented Kalman filter cycle, illustrating
the computation of sigma points and the ‘predict and correct’ beha-
viour. Note that for now we assume additive zero-mean noise sources.
In the next section, we will extend the UKF to arbitrary noise sources
with Gaussian distributions.
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Initialisation

x̂0 = E[x0],P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

Calculation of sigma points

Xk−1 =
{
x̂k−1 x̂k−1 + γ

√
Pk−1 x̂k−1 − γ

√
Pk−1

}

Time update

Propagate sigma points:
Xk|k−1 = φk−1(Xk−1,uk−1)

Compute a priori state estimate:
x̂k|k−1 =

∑2n
i=0W

(m)
i Xi,k|k−1

Compute a priori error covariance:
Pk|k−1 =

∑2n
i=0W

(c)
i

(
Xi,k|k−1 − x̂k|k−1

)(
Xi,k|k−1 − x̂k|k−1

)T
+Qk

Predict measurement:
Zk|k−1 = hk(Xk|k−1)

ẑk|k−1 =
∑2n
i=0W

(m)
i Zi,k|k−1

Measurement update

Compute innovation and cross covariance matrix:
Pz̃kz̃k =

∑2n
i=0W

(c)
i

(
Zi,k|k−1 − ẑk|k−1

)(
Zi,k|k−1 − ẑk|k−1

)T
+Rk

Px̃kz̃k =
∑2n
i=0W

(c)
i

(
Xi,k|k−1 − x̂k|k−1

)(
Zi,k|k−1 − ẑk|k−1

)T

Compute Kalman gain:
Kk = Px̃kz̃kP

−1
zkzk

Compute a posteriori state estimate:
x̂k = x̂k|k−1 +Kk(zk − ẑk|k−1)

Update error covariance:
Pk = Pk|k−1 −KkPz̃kz̃kK

T
k

Output

Figure 10: Operation cycle of the unscented Kalman filter for the additive
zero-mean noise case, illustrating the computation of sigma points
and its ‘predict and correct’ behaviour.
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Non-additive Noise

In the case of non-additive non-zero mean process and measurement
noise, the unscented transformation scheme is applied to the augmen-
ted state xak ∈ Rl, which is defined as the concatenation of the original
state and the noise variables as

xak =
[
xk
T ,wkT , vkT

]T
, (58)

so that l = nx +nw +nv. The corresponding augmented error covari-
ance matrix is given by

Pak = E
[
(xak − x̂

a
k)(x

a
k − x̂

a
k)
T
]
=



Pk 0 0

0 Qk 0

0 0 Rk


 , (59)

with

x̂ak =

[
x̂Tk , E

[
wk
]T , E

[
vk
]T
]T

. (60)

The zeros in bold typeface denote the zero matrix with respective
dimension. Equally, every member Xai,k of the set Xak of augmented
sigma points is constituted of three vector-valued components,

Xai,k =
[
Xx
i,k
T ,Xw

i,k
T ,Xv

i,k
T
]T

. (61)

The vector space Rnx forms a linear subspace of Rl. We denote the set
of all sigma points Xx

i,k belonging to this subspace with Xx
k. Replacing

the superscript x with w and v, respectively, denotes the sigma points
belonging to the subspaces spanned by the noise vectors, that is Xw

k

and Xv
k.

The augmented unscented Kalman filter algorithm is in structure
similar to the that assuming additive noise in Figure 10, but it uses
the augmented state to calculate sigma points, so that the set of sigma
points is denoted as

Xak−1 =
{
x̂ak−1, x̂ak−1 + γa

√
Pak−1, x̂ak−1 − γa

√
Pak−1

}
, (62)

with

γa =
√
(l+ λ) . (63)

Since we assume non-additive noise, we individually propagate
the components of the sigma points that are associated with the state
according to Equation 1,

Xx
k|k−1 = φk−1

(
Xx
k−1,uk−1,Xw

k−1

)
, (64)
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and predict the measurement transforming the a priori sigma points
according to Equation 2,

Zk|k−1 = hk
(
Xx
k|k−1,Xv

k|k−1

)
. (65)

Figure 11 depicts the algorithm in its entirety, including the calculation
of augmented sigma points and the predict and update operations
that are carried out recursively at each time step.

2.4 sequential monte carlo simulation

If the assumptions of the Kalman filter hold, that is a linear process
and measurement model and Gaussian distributions, then no other
algorithm can outperform it [51]. Real-life problems, however, may not
always be described sufficiently accurate by linear-Gaussian models.
Sequential Monte Carlo (SMC) methods are a general simulation-based
approach that essentially converts the intractable integrals of the
Bayesian framework into tractable, finite sums, which converge to the
exact solution in the limit. In contrast to the Kalman filtering methods
above, they are not subject to any linearity or Gaussianity constraints
on the model and entail appealing convergence properties [52]. These
benefits, in turn, come along with increased computational cost.

If a sufficiently large number of samples drawn from the desired
posterior distribution of the Bayesian framework is available, it is
straightforward to approximate the intractable integrals appearing in
Equations 6 and 9 in Section 2.2. In perfect Monte Carlo sampling we
assume that we are able to simulate N independent and identically
distributed random samples x(i)k , drawn from the posterior distribu-
tion p(xk |Zk,Uk−1). These random samples are also called particles.
Each particle x(i)k is a concrete instantiation of the state at time k. That
is, each particle represents a possible hypothesis as to what the true
state of the system may be. An empirical estimate of the posterior
distribution can then be computed as

p(xk |Zk,Uk−1) ≈
1

N

N∑

i=1

δ
(
xk − x

(i)
k

)
, (66)

where δ
(
xk − x

(i)
k

)
denotes the Dirac delta mass located in x(i)k . Addi-

tionally, any expectation of the form

Ep(xk |Zk,Uk−1)

[
f(xk)

]
=

∫
f(xk)p(xk |Zk,Uk−1)dxk (67)

can be approximated as

Ep(xk |Zk,Uk−1)

[
f(xk)

]
≈ Êp(xk |Zk,Uk−1)

[
f(xk)

]

=
1

N

N∑

i=1

f
(
x
(i)
k

)
.

(68)
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Initialisation
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x̂T0 , E

[
w0

T
]
, E
[
v0
T
]]T

Pa0 = E
[(
xa0 − x̂

a
0

)(
xa0 − x̂

a
0

)T]
=

[
P0 0 0
0 Q0 0
0 0 R0

]

Calculation of sigma points

Xak−1 =
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x̂ak−1, x̂ak−1 + γa

√
Pak−1, x̂ak−1 − γa

√
Pak−1

}

Time update

Propagate sigma points:
Xx
k|k−1 = φk−1
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Xx
k−1,uk−1,Xw

k−1

)

Compute a priori state estimate:
x̂k|k−1 =

∑2l
i=0W

(m)
i Xx

i,k|k−1

Compute a priori error covariance:
Pk|k−1 =

∑2l
i=0W

(c)
i

(
Xx
i,k|k−1 − x̂k|k−1

)(
Xx
i,k|k−1 − x̂k|k−1

)T

Predict measurement:
Zk|k−1 = hk

(
Xx
k|k−1,Xv

k|k−1

)

ẑk|k−1 =
∑2l
i=0W

(m)
i Zi,k|k−1

Measurement update

Compute innovation and cross covariance matrix:
Pz̃kz̃k =

∑2l
i=0W

(c)
i

(
Zi,k|k−1 − ẑk|k−1

)(
Zi,k|k−1 − ẑk|k−1
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Px̃kz̃k =
∑2l
i=0W

(c)
i

(
Xx
i,k|k−1 − x̂k|k−1

)(
Zi,k|k−1 − ẑk|k−1

)T

Compute Kalman gain:
Kk = Px̃kz̃kP

−1
zkzk

Compute a posteriori state estimate:
x̂k = x̂k|k−1 +Kk(zk − ẑk|k−1)

Update error covariance:
Pk = Pk|k−1 −KkPz̃kz̃kK

T
k

Output

Figure 11: Operation cycle of the unscented Kalman filter for the non-additive
non-zero-mean noise case, illustrating the computation of sigma
points and its ‘predict and correct’ behaviour.
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As opposed to most deterministic numerical methods, the estima-
tion accuracy is independent of the dimensionality of the state space.
According to the law of large numbers, for N → ∞ the estimated
expectation almost surely converges to the true expectation,

Êp(xk |Zk,Uk−1)

[
f(xk)

] a.s.−−→ Ep(xk |Zk,Uk−1)

[
f(xk)

]
, forN→∞ .

(69)

2.4.1 Sequential Importance Sampling

Since it is rarely possible to sample directly from the posterior distri-
bution, importance sampling is used, which refers to sampling from an
alternative distribution [53]. This easy-to-sample importance sampling
distribution is also called proposal distribution. Expanding Equation 67

with an arbitrary proposal distribution π(xk |Zk,Uk−1) and applying
Bayes’ theorem yields

Ep(xk |Zk,Uk−1)

[
f(xk)

]
=

∫
f(xk)

p(xk |Zk,Uk−1)
π(xk |Zk,Uk−1)
· π(xk |Zk,Uk−1)dxk

=

∫
f(xk)

p(Zk | xk,Uk−1)p(xk |Uk−1)
p(Zk |Uk−1)π(xk |Zk,Uk−1)
· π(xk |Zk,Uk−1)dxk

=

∫
f(xk)wk(xk)p(Zk |Uk−1)

−1

· π(xk |Zk,Uk−1)dxk ,

(70)

with the importance weight

wk(xk) =
p(Zk | xk,Uk−1)p(xk |Uk−1)

π(xk |Zk,Uk−1)
. (71)

The unknown normalising distribution p(Zk |Uk−1) can be written as

p(Zk |Uk−1) =

∫
p(Zk | xk,Uk−1)p(xk |Uk−1)dxk . (72)

Multiplying the integrand with π(xk |Zk,Uk−1)
π(xk |Zk,Uk−1)

and substituting with
the left side of Equation 71, we have

p(Zk |Uk−1) =

∫
wk(xk)π(xk |Zk,Uk−1)dxk . (73)
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Plugging the result back into Equation 70 yields

Ep(xk |Zk,Uk−1)

[
f(xk)

]
=

∫
f(xk)wk(xk)π(xk |Zk,Uk−1)dxk∫
wk(xk)π(xk |Zk,Uk−1)dxk

=
Eπ(xk |Zk,Uk−1)

[
wk(xk)f(xk)

]

Eπ(xk |Zk,Uk−1)

[
wk(xk)

]

≈
1
N

∑N
i=1wk

(
x̂
(i)
k

)
f
(
x̂
(i)
k

)

1
N

∑N
i=1wk

(
x̂
(i)
k

)

=
1

N

N∑

i=1

w̃k

(
x̂
(i)
k

)
f
(
x̂
(i)
k

)
,

(74)

where x̂(i)k denotes the i-th of N samples drawn from π(xk |Zk,Uk−1)

and the normalised importance weights w̃k
(
x̂
(i)
k

)
are given by

w̃k

(
x̂
(i)
k

)
=

wk

(
x̂
(i)
k

)

∑N
i=1wk

(
x̂
(i)
k

) . (75)

It follows that any expectation of the form given by Equation 67 can
be estimated using weighted samples x̂(i)k drawn from the proposal
distribution π(xk |Zk,Uk−1). As it involves a ratio of two other es-
timates, this estimate is biased. However, given that the support of
the proposal distribution includes the support of the posterior dis-
tribution p(xk |Zk,Uk−1), that is the following condition is satisfied:
π(xk |Zk,Uk−1) 6= 0 for any xk for which p(xk |Zk,Uk−1) 6= 0, it
is shown that this estimate is asymptotically unbiased [52]. Given
samples drawn from the proposal distribution, the posterior distribu-
tion is approximated by the weighted point-mass estimate

p(xk |Zk,Uk−1) ≈
N∑

i=1

w̃k

(
x̂
(i)
k

)
δ
(
xk − x̂

(i)
k

)
. (76)

Under the premise of the state space assumptions mentioned in Sec-
tion 2.2, that is Markovianess and observational independence given
the state, as shown in [54], a recursive estimate for the importance
weights may be obtained as

w̃k

(
x̂
(i)
k

)
= w̃k−1

(
x̂
(i)
k−1

)p
(
zk | x̂

(i)
k

)
p
(
x̂
(i)
k | x̂

(i)
k−1,uk−1

)

π
(
x̂
(i)
k | X̂

(i)
k−1,Uk−1,Zk

) . (77)

This variant of importance sampling is called sequential importance
sampling (SIS), referring to its recursive nature. As it is clear that the
weights wk

(
x̂
(i)
k

)
and normalised weights w̃k

(
x̂
(i)
k

)
are a function of

the particles x̂(i)k , respectively, we will use a more succinct notation
and from now on write w(i)

k and w̃(i)
k instead.
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Figure 12: Resampling: replacing the weighted empirical distribution by an
unweighted distribution [55]. Before resampling, the size of the
samples represents their respective importance weight. Samples
with low weights are likely to be eliminated, whereas samples
with higher weights are likely to be reproduced.

2.4.2 Sequential Importance Resampling

A serious limitation of sequential importance sampling is that it degen-
erates with time. In fact, it is shown in [56] that SIS is guaranteed to
fail for large k, as the distribution of the importance weights becomes
more and more skewed [49]. After a few time steps, the majority of
particles have a numerically insignificant importance weight, while
the weight of one particle tends to one, which is effectively equal to
removing the samples from the sample set. The consequence is that
the posterior distribution is not adequately represented by the few
remaining effective samples.

An additional selection step called sequential importance resampling
(SIR), or simply resampling, partially mitigates this problem. Intro-
duced in [57], the rationale behind the resampling idea is to elimin-
ate the particles with low importance weight and instead multiply
particles having high weight. Therefore, the resampling procedure
reflects the Darwinian idea of survival of the fittest and is illustrated for
one dimension in Figure 12.

Formally, resampling is carried out by replacing the weighted em-
pirical distribution in Equation 76 by an unweighted distribution

p(xk |Zk,Uk−1) =
1

N

N∑

i=1

N
(i)
k δ

(
xk − x

(i)
k

)
, (78)

where N(i)
k is the number of offsprings from particle x̂(i)k , such that

the number of particles remains constant,

N∑

i=1

N
(i)
k = N . (79)
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Figure 13: Multinomial resampling [49]. Depicted is the projection of a
random sample from the continuous uniform distribution on
the interval [0, 1] onto the range of the cumulative distribution
function (CDF), which is plotted over the sample numbers 1, . . . ,N.
The intersection with the CDF is projected on the abscissa to obtain
the sample number j, which is then used to select a sample from{
x̂
(j)
k

}N
j=1

.

Multinomial Resampling

Employing the most popular resampling scheme termed multinomial
resampling, which was introduced in [57], the surviving particles are
obtained by drawing N samples x(i)k from the set

{
x̂
(j)
k

}N
j=1

, whilst
samples are chosen with a probability equal to their normalised im-
portance weight. This yields the resampled set

{
x
(i)
k

}N
i=1

, such that Pr
(
x
(i)
k = x̂

(j)
k

)
= w̃

(j)
k , i, j ∈ {1, . . . ,N} , (80)

with equal weights,

w
(i)
k =

1

N
, i = 1, . . . ,N . (81)

The mapping from a weighted random measure to an unweighted ran-
dom measure using a uniform distribution is illustrated in Figure 13.
First, the cumulative distribution function (CDF) of the set

{
x̂
(j)
k

}N
j=1

is constructed. Then, a number from the continuous uniform distri-
bution on the interval [0, 1] is sampled and projected on the range of
the CDF. The intersection is projected on the sample number, which is
used to select the j-th sample from

{
x̂
(j)
k

}N
j=1

.

2.4.3 Importance of the Proposal Distribution

For a finite set of samples, the importance sampling method performs
poorly if only a few particles are placed in regions where the de-
sired posterior is large [58]. This makes the choice of the proposal
distribution a critical design issue for SIS algorithms [49, 59].
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An optimal proposal distribution may be defined as one that min-
imises the variance of the importance weights [60]. Then, as shown
analogously to the proof in [61], which does not consider a control
input, the target distribution is given by

πopt
(
xk |X

(i)
k−1,Uk−1,Zk

)
= p

(
xk | x

(i)
k−1,uk−1, zk

)

=
p
(
zk | xk

)
p
(
xk | x

(i)
k−1,uk−1

)

p
(
zk | x

(i)
k−1,uk−1

) .
(82)

Plugging the result into Equation 77 yields

w̃k = w̃k−1p
(
zk | x

(i)
k−1,uk−1

)

= w̃k−1

∫
p
(
zk | xk

)
p
(
xk | x̂

(i)
k−1,uk−1

)
dxk .

(83)

However, this density suffers from the following two major draw-
backs: it requires the ability to sample from p

(
xk | x

(i)
k−1,uk−1, zk

)
and

to evaluate the integral in Equation 83, both of which may not be
straightforward in practice [51]. Therefore, it is desirable to find an
approximation of the optimal proposal distribution. In [62], Salmond
and Gordon state the “considerable scope for ingenuity in designing
the importance density”. A popular method for devising a proposal
distribution that approximates the optimal distribution given by Equa-
tion 82 is taking into account the latest measurement [52, 63], which
we will elaborate on in detail in Section 2.5.3.

2.5 particle filters

In this section, we shall introduce a non-parametric filtering method
known as the particle filter. Relying in principle on the Monte Carlo
method, particle filters can handle arbitrary multi-modal distribu-
tions. However, their computational cost is a monotonically increasing
function of the estimation accuracy.

2.5.1 The Generic Particle Filter

The generic particle filter is a Monte Carlo algorithm that matches the
Bayesian framework. Starting the filter algorithm at time k = 0, first,
N samples x(i)0 from the initial state distribution p(x0) are drawn,

x
(i)
0 ∼ p(x0), i ∈ {1, . . . ,N} , (84)

and weighted equally as

w
(i)
0 =

1

N
, i ∈ {1, . . . ,N} . (85)
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Then, the following steps are carried out recursively at every time
step k > 0. We draw N equally weighted samples x̂(i)k from the
proposal distribution π

(
xk |X

(i)
k−1,Zk,Uk−1

)
. The set of particles and

their respective weights is denoted as

{(
x̂
(i)
k ,N−1

)}N
i=1

, x̂
(i)
k ∼ π

(
xk |X

(i)
k−1,Zk,Uk−1

)
. (86)

In the light of the measurement zk, the importance weights w(i)
k are

computed for each particle according to Equation 77,

w
(i)
k = w

(i)
k−1

p
(
zk | x̂

(i)
k

)
p
(
x̂
(i)
k | x

(i)
k−1,uk−1

)

π
(
x̂
(i)
k |X

(i)
k−1,Zk,Uk−1

) , i ∈ {1, . . . ,N} . (87)

Normalising yields

w̃
(i)
k = w

(i)
k

[
N∑

j=1

w
(j)
k

]−1
, i ∈ {1, . . . ,N} . (88)

Now, the set of particles is resampled according to Equation 80 and
the weights are set equally according to Equation 81.

The output of the filter is given by a set of N equally weighted
particles x(i)k that can be used to approximate the posterior distribution,
according to Equation 66, and the expectations under it, according to
Equation 68. Often, the estimate of the conditional mean

x̂k = Ẽp(xk |Zk,Uk−1)

[
xk
]
=
1

N

N∑

i=1

x
(i)
k , (89)

which represents the minimum mean-squared error estimate of the
current state, and the covariance

Pk = Ẽp(xk |Zk,Uk−1)

[(
xk − x̂k

)(
xk − x̂k

)T]

=

N∑

i=1

(
x
(i)
k − x̂k

)(
x
(i)
k − x̂k

)T ,
(90)

are the quantities of particular interest. The algorithm of the generic
particle filter is depicted in Figure 14, illustrating the importance
sampling and resampling step.

2.5.2 The Bootstrap Filter

Although many authors have recognised the importance of the pro-
posal distribution for a successful application of SIS [64–66], the trans-
ition prior probability distribution p(xk | xk−1,uk−1) is often used as
importance function [57, 67–70]. Filters using the transition prior as
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x̂k = Ẽp(xk |Zk,Uk−1)

[
xk
]
= 1
N

∑N
i=1 x

(i)
k

Compute covariance:
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Output

Figure 14: Operation cycle of the generic particle filter, illustrating the im-
portance sampling and resampling step. Finally, the particles are
recombined to obtain the minimum mean-squared error estimate
and the corresponding covariance.
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proposal distribution are commonly known as bootstrap filter. The
transition prior is easy to sample from and, as a result of it not incor-
porating the most recent observation, it is usually easier to implement
[52, 65, 71]. In the case of an additive Gaussian process noise model,
the transition prior is simply

p(xk | xk−1,uk−1) = N
(
φk−1(xk−1,uk−1, 0),Qk−1

)
. (91)

In the importance sampling step of the bootstrap filter, each of
the particles is propagated through the system model according to
Equation 1,

x̂
(i)
k = φk−1

(
x
(i)
k−1,uk−1,w(i)

k−1

)
, k > 0, i ∈ {1, . . . ,N} . (92)

where w(i)
k−1 represents a sample drawn from the system noise dis-

tribution. Adding this noise sample creates variety in the set of

hypotheses
{(
x̂
(i)
k ,N−1

)}N
i=1

. Note that this step is equivalent to
sampling from the prior distribution, as

x̂
(i)
k ∼ p

(
xk | x

(i)
k−1,uk−1

)
, k > 0, i ∈ {1, . . . ,N} . (93)

Now, in the light of the measurement zk, the importance weights
w

(i)
k are computed for each particle. When using the transition prior

as proposal distribution, with

π
(
xk |X

(i)
k−1,Zk,Uk−1

)
= p

(
xk | x

(i)
k−1,uk−1

)
, (94)

Equation 87 simplifies to

w
(i)
k = w

(i)
k−1p

(
zk | x̂

(i)
k

)
, k > 0, i ∈ {1, . . . ,N} . (95)

If resampling is carried out every time step, the propagated samples
have uniform weights and Equation 91 reduces to

w
(i)
k = p

(
zk | x̂

(i)
k

)
, k > 0, i ∈ {1, . . . ,N} . (96)

The algorithm of the bootstrap filter is depicted in Figure 15, illus-
trating the importance sampling and resampling step. A graphical
representation of the evolution of the empirical probability distribu-
tions estimated by the bootstrap filter is depicted in Figure 16.

2.5.3 The Unscented Particle Filter

Daum pointed out in [59] that in most of the successful implement-
ations of particle filters the proposal distribution is obtained using
an extended Kalman filter or an unscented Kalman filter. Both filters
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Figure 15: Operation cycle of the bootstrap filter, illustrating the importance
sampling and resampling step. Finally, the particles are recom-
bined to obtain the minimum mean-squared error estimate and
the corresponding covariance.
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Figure 16: Evolution of the empirical probability distributions estimated
by the bootstrap filter. The filter starts at time k − 1 with the
unweighted particles

{(
x̂
(i)
k−1,N−1

)}N
i=1

, which provide an ap-

proximation of p(xk−1 | x
(i)
k−2,uk−2). Computing the importance

weights yields an approximation of p(xk−1 |Yk−1,Uk−1) given
by the set

{(
x̂
(i)
k−1, w̃(i)

k−1

)}N
i=1

. In the resampling step, the fit-

test particles are reproduced to obtain
{(
x
(i)
k−1,N−1

)}N
i=1

, which
again approximates p(xk−1 |Yk−1,Uk−1). Finally, closing the
filter loop, the prediction step produces variety, resulting in{(
x̂
(i)
k ,N−1

)}N
i=1

, an approximation of p(xk | x
(i)
k−1,uk−1) [49].

compute recursive Gaussian approximations of the posterior filtering
distribution,

p
(
xk |Zk,Uk−1

)
≈ pN

(
xk |Zk,Uk−1

)
= N

(
x̂k,Pk

)
. (97)

incorporating the latest measurement at each time step. Within the
particle filter framework, the EKF or UKF can be used to propagate a
Gaussian proposal distribution for each particle,

π
(
xk |X

(i)
k−1,Zk,Uk−1

)
= N

(
x̄
(i)
k ,P(i)

k

)
, i ∈ {1, . . . ,N} . (98)

The i-th particle at time step k is then sampled from this distribution,

x̂
(i)
k ∼ π

(
xk |X

(i)
k−1,Zk,Uk−1

)
, k > 0, i ∈ {1, . . . ,N} . (99)

Although the individual proposal distributions for each particle are
Gaussian, in general, the form of the overall proposal distribution
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(a)

Proposal
distribution

Likelihood
function

Particles

(b)

Figure 17: The two scenarios in which a parametric filter such as the EKF or
UKF may help generating better proposal distributions by moving
particles to regions of high likelihood: (a) when there is little
overlap of proposal distribution and likelihood function, that is
when the peak of the likelihood happens to lie in one of the tails
of the proposal distribution or (b) when the likelihood function is
very narrow, which is the case for very accurate measurements.

π(xk |Xk−1,Zk,Uk−1) will not be Gaussian. Though, the peak of the
proposal distribution is moved towards the peak of the likelihood
function, therefore moving particles to regions of high likelihood, as il-
lustrated in Figure 17. Scenario (a) depicts little overlap of the proposal
distribution and the likelihood function, which may be the case when
the available model is not sufficiently accurate. Scenario (b) depicts
peaked likelihood, which represents very accurate measurements.

Van Der Merwe et al. [50] proposed to use an unscented Kalman
filter in order to incorporate the latest measurement and thus to
generate better proposal distributions. Based on the ability of the UKF
to more accurately propagate the mean and covariance of the state
distribution, when compared to the EKF, the result is a bigger support
overlap with the true posterior distribution. The resulting filter is
referred to as the unscented particle filter.

Figure 18 depicts the entire unscented particle filter algorithm, in-
cluding the calculation of sigma points for each particle, the time
and measurement update step, as well as the importance sampling
and resampling step. Note that we denote the mean of the Gaussian
proposal distribution of the i-th particle with x̄(i)k , being consistent
with former notation of the mean. For the i-th hypothesis x̂(i) of the
state we continue to use a hat.
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Figure 18: Operation cycle of the unscented particle filter, illustrating the
calculation of sigma points for each particle, the time and meas-
urement update step, as well as the importance sampling and
resampling step. Finally, the particles are recombined to obtain
the minimum mean-squared error estimate and the corresponding
covariance.
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2.6 interval analysis

Built on the foundation of set theory, interval analysis encompasses
numerical methods that yield reliable results. Originating back to
Moore’s doctorate on the use of intervals to analyse and control
numerical errors in digital computers in 1962, interval computation
has come a long way and has been subject to extensive research since.
As opposed to the probabilistic methods presented above, which
provide a point estimate associated with a given uncertainty in the
form of a probability distribution, interval computations provide a
box guaranteed to contain the solution, given that the problem is well
modelled and the assumptions are sufficiently conservative. However,
this guarantee comes with the trade-off that any point in the confined
solution space is assumed to be equally likely.

As we shall see below, self-localisation can be modelled as an op-
timisation problem. In [72], Rokne states the following advantages of
interval methods to global optimisation problems. They

• do not rely on starting points,

• can prove existence, absence, and uniqueness of solutions,

• can easily accommodate external constraints,

• and are reliable in that they never discard a feasible solution.

An in-depth presentation of the following basic concepts can be found
in [73].

2.6.1 Basic Concepts

Let [x] denote a closed interval, defined as a closed subset of the real
numbers given by

[x] =
[
x, x
]
=
{
x ∈ R | x 6 x 6 x

}
, (100)

where x and x are called the lower bound and the upper bound of the
interval, respectively. An interval [x] can be assigned a width w

(
[x]
)
, a

midpoint mid
(
[x]
)
, and an absolute value

∣∣[x]
∣∣, given by

w
(
[x]
)
= x− x , (101)

mid
(
[x]
)
=
x+ x

2
, (102)

∣∣[x]
∣∣ = max

(
|x|, |x|

)
, (103)

respectively. We denote the set of closed intervals with endpoints in
the set of real numbers augmented by plus and minus infinity with

[R] =
{[
x, x
]
| x, x ∈ R∪ {−∞,∞}, x 6 x

}
∪ ∅ . (104)
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Note that we include the empty set, in order to form a closed interval
system, that is, a system in which there are no undefined operator-
operand or function-argument combinations [74].

The intersection of two intervals [x] and [y] ∈ [R] is defined as the
interval

[x]∩ [y] =
{
z ∈ R | z ∈ [x] and z ∈ [y]

}

=





[
max(x,y), min(x,y)

]
if max(x,y) 6 min(x,y)

∅ otherwise
.

(105)

While the intersection is always an interval, this is not true for the
union of [x] and [y], given by

[x]∪ [y] =
{
z ∈ R | z ∈ [x] or z ∈ [y]

}
. (106)

To make the set of intervals closed with respect to the union, we define
the interval hull of a subset X ∈ R as the smallest interval [X] that
contains it. Now, we can define the interval union of [x] and [y] as the
interval hull of the union [x]∪ [y],

[x]t [y] =
[
[x]∪ [y]

]

=
[

min(x,y), max(x,y)
]

.
(107)

Multiplication of a real number α with an interval [x] is defined as

α[x] =
{
αx | x ∈ [x]

}

=





[
αx,αx

]
ifα > 0

[
αx,αx

]
ifα < 0

.
(108)

An inner binary operation ◦ on the real intervals [x], [y] ∈ [R] is defined
by

[x] ◦ [y] =
{
x ◦y ∈ R | x ∈ [x] andy ∈ [y]

}
. (109)

Hence, the four basic arithmetic operations on intervals are given by
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[x]

[x1]

mid
(
[x]
)[x2]

∣∣∣∣[x]
∣∣∣∣ w

(
[x]
)

Figure 19: The projection of an interval vector [x] =
[
[x1], [x2]

]
∈ [R]2 onto

the two axes as well as its width w
(
[x]
)
, norm

∣∣∣∣[x]
∣∣∣∣, and midpoint

mid
(
[x]
)
, [75].

[x] + [y] =
[
x+ y, x+ y

]
(110)

[x] − [y] =
[
x− y, x− y

]
(111)

[x] · [y] =
[

min
(
x·y, x · y, x · y, x · y

)
,

max
(
x · y, x · y, x · y, x · y

)] (112)

[x]

[y]
=

[
min

(x
y

,
x

y
,
x

y
,
x

y

)
,

max
(x
y

,
x

y
,
x

y
,
x

y

)]
, 0 /∈ [y]

(113)

These definitions are motivated by the following argument: Given
two intervals [x] and [y] and two exact values x ∈ [x] and y ∈ [y], it is
guaranteed that x ◦ y ∈

(
[x] ◦ [y]

)
, even though the exact values of x

and y may not be known [72].
A real interval vector [x] =

(
[x1], [x2], . . . , [xn]

)T ∈ [R]n, also called a
box, is defined as the Cartesian product of n real intervals,

[x] = [x1]× [x2]× · · · × [xn] , (114)

where the i-th interval component [xi] represents the projection of [x]
onto the i-th axis. We define multiplication of an interval vector with
a real number and the addition and multiplication of two interval
vectors as follows:
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α[x] =
(
α[x1], . . . ,α[xn]

)
, (115)

[x] + [y] =
(
[x1] + [y1], . . . , [xn] + [yn]

)
, (116)

[x]T · [y] = [x1] · [y1] + · · ·+ [xn] · [yn] . (117)

Likewise, the width and the midpoint can be extended naturally to
interval vectors as follows:

w
(
[x]
)
= max
16i6n

(
w
(
[xi]
))

(118)

mid
(
[x]
)
=

[
mid

(
[x1]

)
, . . . , mid

[
xn]
)]T

. (119)

A box can be assigned a norm
∣∣∣∣[x]

∣∣∣∣, which represents a generalisation
of the absolute value, given by

∣∣∣∣[x]
∣∣∣∣ = max

16i6n

(∣∣[xi]
∣∣
)

. (120)

The projection of an interval vector [x] onto the i-th axis as well as its
width, norm, and midpoint is depicted in Figure 19 for n = 2.

Let f : Rn → Rm, [x] ∈ [R]n, and f
(
[x]
)

the image of [x] under f,
given by

f
(
[x]
)
=
{
f(x) | x ∈ [x]

}
. (121)

An interval function [f] : [R]n → [R]m is called inclusion function of f
if

f
(
[x]
)
⊆ [f]

(
[x]
)
, ∀[x] ∈ [R]n . (122)

The simplest way of obtaining an inclusion function [f] of a given func-
tion f is to replace each real variable by their natural interval extension.
The resulting function is called the natural inclusion function. If [f] is
the inclusion function that determines the smallest possible box com-
prising f

(
[x]
)

it is called minimal and denoted by [f]∗
(
[x]
)
. Figure 20

depicts the image of a box [x] under f and two of its possible inclusion
functions, one of them the minimal inclusion function [f]∗

(
[x]
)
.

Since the minimal inclusion function is usually not available a so-
called contractor can be used to minimise a known inclusion function
instead. Before we elaborate on contractors in Section 2.6.3, we will
introduce a generic description of problems involving constraints in
the next section.

2.6.2 Constraint Satisfaction Problems

Utilising the notion of constraints is a formal and declarative way
of describing certain problems, abstracting from a domain-specific
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[f]∗([x])

f([x])

[f]([x])
[x]

x1x1x1 y1

x2 y2

x2

x2

Figure 20: Image f
(
[x]
)

of a box [x] ∈ [R]2 under f : R2 → R2 and two
inclusion functions [f]

(
[x]
)

and [f]∗
(
[x]
)
. The interval function [f]∗

is the minimal inclusion function [73].

description in order to allow the solution of the problem with efficient,
generic solution methods. Formally, a constraint satisfaction problem
(CSP) is defined as a triple (X, D, C), where X = {x1, . . . , xn} is a
finite set of variables with their associated non-empty domains D =

{D1, . . . ,Dn}, so that xi ∈ Di, and C = {C1, . . . ,Cm} is a finite set of
constraints. Each of the constraints Cj ∈ C in turn is a pair (Tj,Rj),
where Tj = {xj,1, . . . , xj,k} ⊆ X is a subset of the variables and Rj
is a k-ary relation on the corresponding subset of domains Dj =

{Dj1, . . . ,Djk} ⊆ D, reducing possible combinations of the values of
variables to a subset of Dj1 × · · · ×Djk.

If the domains Di are real intervals [xi] and the constraints have the
form of equalities or inequalities, so that the relation Rj is either of the
form

fj(x1, . . . , xk) = 0, j ∈ {1, . . . ,m} , (123)

or of the form

fj(x1, . . . , xk) 6 0, j ∈ {1, . . . ,m} , (124)

we call this a numerical constraint satisfaction problem (NCSP). In the
latter case we can introduce a slack variable xsj > 0 to cast the
inequality constraint to an equality constraint as follows:

fj(x1, . . . , xk) + xsj = 0, j ∈ {1, . . . ,m} . (125)

Now, we combine the n scalar variables to form a real vector x =

(x1, . . . , xn)T ∈ Rn with its domain [x0] =
(
[x1], . . . , [xn]

)T ∈ [R]n.
Let f : Rn → Rm denote a function whose coordinate functions are
given by the fjs. Then, Equation 123 can be written as f(x) = 0, which
corresponds to the constraint satisfaction problem H, formulated as

H :
(
f(x) = 0, x ∈ [x0]

)
, (126)

with its solution set given by

S =
{
x ∈ [x0] | f(x) = 0

}
. (127)
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=

×

2 x

−

z ̂

y 2

[0, 16]

[2] [0, 20]

[0, 40][a] [−100, 16][c]

[0, 16] [0, 100][b]

[−10, 10] [2]

Figure 21: Algorithm HC4: annotated tree for the forward evaluation in the
constraint 2x = z− y2 and the domains [x] = [0, 20], [y] = [0, 16],
and [z] = [−10, 10].

We say a point x is feasible if x ∈ S. Then, x is said to solve the
constraint satisfaction problem. Otherwise x is infeasible.

As characterising the solution set is NP-hard in general [73], so-
called consistency techniques finding outer approximations of S, whilst
keeping complexity polynomial in time, have been used [76–78]. One
such consistency technique is contracting H, which means replacing
[x] by a smaller box [x] ′, such that no feasible solution is discarded:

S ⊆ [x] ′ ⊂ [x] . (128)

If [x] is replaced by the smallest possible box [x] ′ that contains S this
is called the optimal contraction of H.

2.6.3 Contractors

Given the numerical constraint satisfaction problem H, a contractor
C : [R]n → [R]n is an operator that contracts the box [x] ∈ [R]n by
eliminating values inconsistent with the constraints Ci. It does so
without bisecting [x], so as to keep complexity polynomial. Explicitly,
a contractor satisfies the two following properties:

Contractance C
(
[x]
)
⊆ [x], ∀[x] ∈ [R]n , (129)

Completeness C
(
[x]
)
∩ S = [x]∩ S, ∀[x] ∈ [R]n . (130)

A simple contractor demanding little computational resources is the
forward-backward contractor [79], denoted by C↑↓. The underlying
HC4 algorithm [80] uses a tree representation of each of the individual
constraints Ci, where leaves correspond to variables or constants,
internal nodes correspond to unary or binary primitive operators, and
the root node contains the k-ary relation symbol.

After the construction of an expression tree from a single constraint
of the given NCSP, the tree is traversed from the leaves to the root and
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the subexpression at each node is evaluated using its natural interval
extension. In this forward phase the domains of the variables are used
to obtain interval values for the intermediate nodes of the tree, as
is depicted in Figure 21 for the variables x,y, and z, an exemplary
constraint 2x = z − y2, and the domains [x] = [0, 20], [y] = [0, 16],
and [z] = [−10, 10]. Adopting this example, as shown in [81], the
operations carried out in the forward phase are the following:

1 [a] := 2[x] [0, 40]

2 [b] := [y]2 [0, 100]

3 [c] := [z] − [b] [−100, 16]

4 [r] := [a] − [c] [0, 16]

The three intermediate nodes are denoted with a,b and c, respectively,
the root node with r, and := denotes an assignment of the value of
the right hand side expression to the interval variable on the left. The
intervals in the last column are the values assigned for the above
example.

In the backward phase, these intervals are then contracted, applying
in every node a narrowing operator by isolating the nodes and using
inverse operations, yielding reduced domains of the variables [82]. The
operations carried out in the backward propagation are the following:

5 [a] := [r]∩ [a] [0, 16] // see Step 4

6 [c] := [r]∩ [c] [0, 16] // see Step 4

7 [z] :=
(
[c] + [b]

)
∩ [z] [0, 16] // see Step 3

8 [b] :=
(
[z] − [c]

)
∩ [b] [0, 16] // see Step 3

9 [y] :=
√
[b]∩ [y] [−4, 4] // see Step 2

10 [x] :=
(
[a]/2

)
∩ [x] [0, 8] // see Step 1

These operations have been derived by isolating each variable on
the right hand side of the equations in Step 1 to 4. Steps 5 and 6

result from the interval equality represented by the root node. In
HC4, the application of cascading projections of primitive constraints
is implemented by HC4Revise, while the manual isolation in Steps 5

to 10 of this example is only carried out for demonstration purposes.
After the two phases have been carried out, each node but the root
node contains two interval attributes as depicted in Figure 22. If [r]
as computed in Step 4 turns out to be empty, then the NCSP has no
solution.

2.6.4 Set Inversion Problems

Allowing only domains represented by bounded real intervals, the
NCSP reduces to a set inversion problem, which is characterised by
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=

×

2 x

−

z ̂

y 2

[0, 16]

[2] [0, 20][0, 8]

[0, 40][0, 16] [−100, 16][0, 16]

[0, 16][0, 16] [0, 100][0, 16]

[−10, 10][−4, 4] [2]

Figure 22: Algorithm HC4: annotated tree for the backward propagation in the
constraint 2x = z− y2 and the domains [x] = [0, 20], [y] = [0, 16],
and [z] = [−10, 10]. The results of the backward phase are depicted
in bold typeface.

finding the preimage S of a set Y ⊂ Rp under the possibly non-linear
function f : Rn → Rp, defined as

S = f−1
(
Y
)
=
{
x ∈ Rn | f(x) ∈ Y

}
. (131)

For any bounded set Y and an inclusion function [f] : [R]n → [R]p of
f two regular subpavings S and S, such that

S ⊆ S ⊆ S, with S = S∪∆S , (132)

may be obtained using a set inversion algorithm. A subpaving of a
subset S ⊂ Rn is a union of non-overlapping subboxes [xj] with non-
zero width. Two boxes in the same subpaving may have a non-empty
intersection if they have a boundary in common, but their interiors
must have an empty intersection. A subpaving is called regular when it
may be obtained from the initial search box [x0] by a finite succession
of bisections and selections.

2.6.5 Set Inverter via Interval Analysis

A popular set inversion algorithm is the vectorisable [83] non-linear
bounded-error estimator SIVIA (Set Inverter via Interval Analysis)
introduced by Jaulin and Walter in [84]. Its main idea may be sum-
marised as bisecting and testing the search space, narrowing down
the set of feasible solutions.

Given a list L =
{
[x0]
}

of boxes containing the initial search box
[x0] to which S is guaranteed to belong, the SIVIA algorithm may
encounter the following four cases:
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Figure 23: The result of the SIVIA algorithm for ε = 0.25 and the solution
set given by Equation 135. The inner approximation S is depicted
in red and ∆S is depicted in yellow, while the blue line bounds
the true solution set. The complement of the outer approximation
S = S ∪ ∆S, which is depicted in white, does not contain any
solutions.

• If [f]
(
[x]
)

does not intersect with Y, [x] is discarded as it does
not belong to the solution set S. This follows from the inclusion
test

[f]
(
[x]
)
∩Y = ∅ =⇒ [x]∩ S = ∅ . (133)

• If [f]
(
[x]
)

is contained in Y, then [x] belongs to the solution set
and is assigned to the inner approximation S. This follows from
the inclusion test

[f]
(
[x]
)
⊂ Y =⇒ [x] ⊂ S . (134)

• If [f]
(
[x]
)

intersects with Y, but is not contained in Y, [x] is
bisected, given its width is bigger than a predefined limit ε, and
the recursion is entered by adding it to L.

• If the width of [x] is not bigger than ε, [x] is stored in ∆S and
therefore belongs to the outer approximation S.

These steps are carried out while L is non-empty. The parameter
ε > 0 determines the maximum width of the boxes in ∆S and thus
the precision of the result. Algorithm 1 presents the Set Inverter via
Interval Analysis. Figure 23 depicts the result of the SIVIA algorithm
for ε = 0.25 and the solution set

S =
{
(x1, x2) ∈ R2 | x21 + x

2
2 + 2 sin(x1) > 9,

x21 + x
2
2 − 2 sin(x1) 6 16, x2 > 0

}
.

(135)

The figure was generated using the toolbox developed in [82].
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Algorithm 1 SIVIA (Set Inverter via Interval Analysis) [73]

Input: [x0] ∈ [R]n, Y ∈ Rp, [f] : [R]n → [R]p, ε > 0

Output: S, S such that S ⊆ S ⊆ S, with S = S ∪ ∆S and w
(
[x]
)
6

ε ∀ [x] ∈ ∆S

1: function SIVIA([x0], Y, [f], ε)
2: L←

{
[x0]
}

3: S← S← ∆S← ∅
4: while L 6= ∅ do
5: [x]← pop(L) . retrieve and remove a box from the list
6: if f

(
[x]
)
∩Y = ∅ then . [x] does not belong to S

7: discard [x]

8: else if f
(
[x]
)
⊂ Y then . [x] belongs to S

9: S← S∪ [x]
10: else if w

(
[x]
)
6 ε then . [x] belongs to ∆S

11: ∆S← ∆S∪ [x]
12: else . cannot be decided
13: bisect [x] into [x1] and [x2]

14: push(L, [x1]) . add box to the list
15: push(L, [x2])
16: end if
17: end while
18: S← S∪∆S

19: return (S, S) . return inner and outer approximation
20: end function

With sufficient computational resources, inner and outer interval
approximations of the solution set can be made arbitrarily precise and
can therefore provide a good estimate of the real shape of the set [82].
However, subpavings are adapted to low-dimensional problems, since
they form an expensive representation of sets in terms of memory
space. Both contractors and SIVIA can be combined in order to im-
prove the performance of the latter. Reducing the initial search box
for the SIVIA algorithm by contracting it first can lower the number of
bisections and may therefore lead to reduced computational cost.



3
T H E H Y B R I D L O C A L I S AT I O N A L G O R I T H M S

In this chapter we will describe in detail the four new hybrid local-
isation algorithms, the key idea of which is to only perform Monte
Carlo localisation over a delimited region of the search space that
is constituted of feasible robot positions. This delimited region is
determined using the two bounded-error estimators HC4 and SIVIA, as
described in Section 2.6.3 and 2.6.5, respectively. Thus, by increasing
the particle density in interesting regions, the localisation accuracy
should increase. Specifically, we will present

• a bootstrap particle filter with HC4 contractor (PFC),

• an unscented particle filter with HC4 contractor (UPC),

• a bootstrap particle filter with SIVIA (PFS),

• and an unscented particle filter with SIVIA (UPFS).

Depending on the amount of available information in terms of the
number of visible landmarks, the delimited region may still be large.
Therefore, in addition to the simple bootstrap particle filter, which is
simply denoted as particle filter in the following, an unscented particle
filter was employed in combination with the respective bounded-error
estimator.

As described in Section 2.5.3, the unscented particle filter can move
particles to regions of the search space that are associated with a
high observation likelihood and therefore potentially improve the
estimation accuracy, especially when dealing with very accurate meas-
urements. As no particles remain in regions where they would receive
an insignificantly low importance weight and therefore simply die in
the next resampling step, it may also be possible to further reduce
the number of particles, when compared to the particle filter. Finally,
the speed of convergence should be influenced positively by actively
moving particles towards the peak of the likelihood function.

In a symmetric environment both conventional probabilistic filters
may possibly converge to the wrong place and may not be able to
recover from this. Using geometrical considerations of the environ-
ment, which are further explained below, as well as basic plausibility
considerations, convergence to the wrong position can be prevented
by excluding the opposing solution from the set of feasible solutions
and therefore bringing the initial particles closer to the peak of the
true posterior distribution.

51
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A fundamental concept that we will need for the introduction of
the state-space and bounded-error model in Section 3.2 and 3.3, re-
spectively, is the attitude of a robot, which we will elaborate on in the
following section. In Section 3.4, we show how constraints are incor-
porated in the inherently unconstraint generic particle filter framework.
Finally, the four new localisation algorithms are presented in Section
3.5.

3.1 attitude representation

The orientation of the coordinate frame of a robot, referred to as the
body frame, with respect to a reference coordinate frame, termed the
world frame, is known as attitude. The origin of the body coordinate
system is usually chosen to be the robot’s center of gravity. Estab-
lishing correspondence between the two frames is one of the goals of
the localisation process. In the following section, we will introduce a
common attitude representation known as Euler angles.

3.1.1 Euler Angles

Euler angles are one of several mathematical ways to describe the
attitude of an object in three-dimensional Euclidean space. They
represent a sequence of three elemental rotations about the axes of the
world coordinate system, defined as follows:

• The roll angle φ determines the rotation around the x-axis.

• The pitch angle θ determines the rotation around the y-axis.

• The yaw angle ψ determines the rotation around the z-axis.

Figure 24 depicts the rotation about the axes z,y ′,X by ψ, θ,φ, re-
spectively, according to the Tait-Bryan convention. The colour blue
indicates the world frame {x,y, z}, which matched the body frame
{X, Y,Z} before the rotations. The colour red indicates the orientation
of the body frame after the rotations were carried out. In contrast
to extrinsic rotations, where each of the three elemental rotations may
occur about the axes of the original coordinate system, the Tait-Bryan
rotations are intrinsic rotations that occur about the axes of the rotating
coordinate system, which changes its orientation after each rotation.

Euler angles are a simple and intuitive means to represent rotations
in three-dimensional space. However, for the above mentioned para-
meterisation they have singularities at values of θ = nπ, n ∈ Z. At
these points a rotation about the x-axis and the z-axis constitute the
same motion, which results in the loss of one degree of freedom and
makes changes in φ and ψ indistinguishable. This phenomenon is
called gimbal lock.
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Figure 24: Representation of the body frame, depicted in red, with respect to
the world frame, depicted in blue [85]. The body frame was rotated
by the Euler angles ψ, θ,φ about the axes z,y ′,X, respectively.

3.1.2 Transformation Matrices

Coordinates representing a point in one coordinate system can be
transformed to another, given the angles between the two coordinate
systems are known. Such a transformation can be expressed as a
multiplication of a matrix with the coordinate vector that is to be
transformed. Let E denote the orthonormal basis {x,y, z} ∈ R3 and
let E ′ denote the orthonormal basis {X, Y,Z} ∈ R3. Furthermore, let p
denote the position vector of an arbitrary point in three-dimensional
Euclidean space, expressed in terms of E. The coordinate transform-
ation that maps p to its representation in E ′ is given by the linear
transformation ΩE→E ′ ,

ΩE→E ′ : R3 → R3

p 7→ T (ψ, θ,φ)p ,
(136)

where the transformation matrix T is a function of the rotation angles
ψ, θ,φ between the coordinate axes.
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Figure 25: An exemplary coordinate rotation about the z-axis by an angle ψ,
illustrating the orthogonal projection (p ′x,p ′y,p ′z) of the position
vector p on the resulting axes x ′,y ′, z ′.

In order to transform a coordinate vector from the world frame to
the body frame, according to the common aerospace rotation sequence
mentioned above, the transformation matrix Twb is given by

Twb = Tx(φ)Ty(θ)Tz(ψ)

=

[
1 0 0
0 cosφ sinφ
0 − sinφ cosφ

][
cosθ 0 − sinθ
0 1 0

sinθ 0 cosθ

][
cosψ sinψ 0
− sinψ cosψ 0
0 0 1

]

=

[
cosθ cosψ cosθ sinψ − sinθ

sinφ sinθ cosψ−cosφ sinψ sinφ sinθ sinψ+cosφ cosψ sinφ cosθ
cosφ sinθ cosψ+sinφ sinψ cosφ sinθ sinψ−sinφ cosψ cosφ cosθ

]
.

(137)

Plugged in Equation 136, the pre-multiplications of the matrices Tx(φ),
Ty(θ), and Tz(ψ) to the vector p represent the coordinate rotations
about the single axes x,y ′,Z, according to the right hand rule, respect-
ively. That is, the function ΩE→E ′ maps the vector p to its orthogonal
projection onto the axes of the coordinate system that results from the
respective two-dimensional rotation of φ, θ,ψ about the axes x,y ′,Z.
This is illustrated for a single rotation around the z-axis by an angle ψ
in Figure 25. Note that {x ′,y ′, z ′} denotes the coordinate frame after
the first elemental rotation. The matrices Tx(φ), Ty(θ), and Tz(ψ) are
also known as direction cosine matrices, since their elements are the
cosines of the unsigned angles between the body-fixed axes and the
axes of the world frame, as shown in [86]. The Blender Game Engine
[87] used for the simulations in Chapter 4 assumes a right-handed
east-north-up coordinate system. Then, the matrix Tbw that trans-
forms a coordinate vector from the body frame to the world frame is
given by
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Tbw =

[
cosθ cosψ sinφ sinθ cosψ−cosφ sinψ cosφ sinθ cosψ+sinφ sinψ
cosθ sinψ sinφ sinθ sinψ+cosφ cosψ cosφ sinθ sinψ−sinφ cosψ
− sinθ sinφ cosθ cosφ cosθ

]
.

(138)
Note that Tbw = TTwb = T−1

wb. Thus, Tbw and Twb are orthogonal
matrices so that TbwTwb = I3, where I3 ∈ R3×3 is the identity matrix.
This makes sense as forward and backward rotations should not alter
the vector p.

3.2 the probabilistic state-space model

In this section we will derive the state-space model for the particle
filters, which is comprised of two components, i. e. the system model
and the measurement model, in accordance with Equations 1 and 2.

3.2.1 The System Model

The plant dynamics of a continuous-time system can be expressed as
a set of nx coupled first-order ordinary differential equations, known
as the state equations [88],

ẋ = f(x,u, t) , (139)

where ẋ consists of the component-wise time derivatives of the state
vector x, expressed in terms of the state variables x1(t), . . . , xnx(t),
and the control inputs u1(t), . . . ,unu(t). Explicitly, its elements are
given by

ẋi = fi(x,u, t) =
dxi
dt

, i ∈ {1, . . . ,nx} . (140)

Given this state-space representation, the system state at any instant t
may be interpreted as a point in an nx-dimensional state space whose
axes are the state variables. The dynamic state response x(t) can be
interpreted as a trajectory traced out in the state space.

Discretisation of the State Equations

Given a linear time-invariant system in state-space form,

ẋ(t) = Ax(t) +Gu(t) , (141)

and its solution

x(t) = eA(t−t0)x(t0) +

∫t

t0

eA(t−τ)Gu(τ)dτ , (142)

we shall discretise the continuous-time system using a discrete time
index k, such that

t = kTs , (143)
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where Ts is the sampling period. Our goal then is to determine a
dynamical relation of the following form:

xk+1 =Φxk +Buk, k ∈ {0, 1, 2, . . . } , (144)

where we replaced x(kTs) by xk and u(kTs) by uk for the sake of
brevity.

In the following derivation of the matrices Φ and B, we assume the
control input u(t) is constant over the sampling interval, such that the
following holds:

u(t) = u(kTs), kTs 6 t < (k+ 1)Ts . (145)

Setting t0 = kTs and t = (k+ 1)Ts in Equation 142 yields

x
(
(k+ 1)Ts

)
= eATsx(kTs) +

∫ (k+1)Ts
kTs

eA
[
(k+1)T−τ

]
Gu(τ)dτ . (146)

Using that the control input is constant within the interval from kTs
to (k+ 1)Ts, as is the matrix G, we can rewrite x

(
(k+ 1)Ts

)
as

x
(
(k+ 1)Ts

)
= eATsx(kTs) +

∫ (k+1)Ts
kTs

eA
[
(k+1)T−τ

]
dτGu(kTs) ,

(147)
or shorter as

xk+1 = e
ATsxk +

∫ (k+1)Ts
kTs

eA
[
(k+1)T−τ

]
dτGuk . (148)

Changing variables, such that (k+ 1)T − τ = λ, yields

xk+1 = e
ATsxk +

∫Ts
0

eAλdλGuk . (149)

By comparison with Equation 144 we may now identify the matrices
Φ and B as

Φ = eATs , (150)

B =

∫Ts
0

eAλdλG . (151)

In order to obtain the state transition matrix Φ, as outlined in [40],
we can use a Taylor-series expansion of eATs ,

Φ = eATs =

∞∑

n=0

AnTns
n!

= Inx +ATs +
A2T2s
2!

+
A3T3s
3!

+ . . . ,

(152)
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where Inx ∈ Rnx×nx is the identity matrix. Truncating the Taylor
series after the first order terms yields the linear approximation of the
state transition matrix:

Φ ≈ Inx +ATs . (153)

Using a Taylor series expansion of Equation 151 and integrating term-
by-term, we may obtain B as

B =

∫Ts
0

eAλdλG

=

∫Ts
0

(
Inu +Aλ+

A2λ2

2!
+
A3λ3

3!
+ · · ·

)
dλG

=

( ∫Ts
0

Inudλ+

∫Ts
0

Aλdλ+

∫Ts
0

A2λ2

2!
dλ+

∫Ts
0

A3λ3

3!
dλ+ · · ·

)
G

= GTs +
AGT2s
2!

+
A2GT3s
3!

+ . . . .

(154)

Again, taking the first term only, such that

B ≈ GT , (155)

and plugging B together with Φ of Equation 153 into Equation 144

yields Euler’s forward approximation:

xk+1 ≈ (Inx +ATs)xk +GukTs, k ∈ {0, 1, 2, . . . } . (156)

However, Equations 152 and 154 can easily be implemented in soft-
ware. Therefore, terminating the series when the terms become smaller
than some desired threshold provides arbitrarily precise results [89].

Discretisation of the Modelled System

The state vector of the robot is given by

xk =
[
xk, yk, zk

]T
∈ Rnx=3, k ∈ {0, 1, 2, . . . } , (157)

where its elements correspond to the coordinates describing the three-
dimensional position (xk,yk, zk) of the robot at time step k, expressed
in the world frame. The plant dynamics of the modelled system are
governed by the linear differential equation

ẋ = Ax(t) +Gu(t) =



v
[w]
x (t)

v
[w]
y (t)

v
[w]
z (t)


 , (158)

with the control input u(t) =
[
v
[w]
x (t), v[w]

y (t), v[w]
z (t)

]T , whose com-
ponents denote the nominal linear velocity in x, y, and z direction,



58 the hybrid localisation algorithms

respectively, stated in terms of the world frame. Equating coefficients
in Equation 158 lets us identify the remaining variables as A = 0

and G = Inu . Plugging A and G into Equations 152 and 154 yields
Φ = Inx and B = InuTs. Plugging now both Φ and B into Equation
144, we have

xk+1 = xk +ukTs, k ∈ {0, 1, 2, . . . } . (159)

Since the robot’s nominal linear velocity is naturally stated in terms
of its body frame, as u[b]

k =
[
v
[b]
x,k, v[b]y,k, v[b]z,k

]T , it has to be transformed
to the world frame according to Equation 136, using the transformation
matrix Tbw(ψk, θk,φk) of Equation 138,

xk+1 = xk + Tbw(ψk, θk,φk)u
[b]
k Ts, k ∈ {0, 1, 2, . . . } (160)

Note that with the state equations at hand this is the best model
available and a consequence of A = 0. Although the form is similar,
contrary to the claim in [29], this result is no Euler approximation but
instead reflects the limited knowledge about the modelled system.

Adhering to the notation used above, we subtract 1 from each
discrete time index k and add noise terms to the individual variables,
to take into account the inherent uncertainty in the model,

xk = φk−1(xk−1,uk−1,wk−1)

= xk−1 + Tbw
(
ψk−1 +wψ,k−1, θk−1 +wθ,k−1,φk−1 +wφ,k−1

)

·
(
u
[b]
k−1 +wv,k−1

)
Ts, k ∈ {1, 2, 3, . . . } .

(161)

The process noise vectorwk =
[
wv,k,wEul,k

]
∈ Rnw=6, withwEul,k =[

wψ,k,wθ,k,wφ,k
]T and wv,k =

[
wvx,k,wvy,k,wvz,k

]T , is assumed
to be normally distributed with zero mean and constant covariance
matrix Qk ∈ Rnw×nw , given by

Qk =




σ2v 0 0 0 0 0

0 σ2v 0 0 0 0

0 0 σ2v 0 0 0

0 0 0 σ2Eul 0 0

0 0 0 0 σ2Eul 0

0 0 0 0 0 σ2Eul




, k ∈ {0, 1, 2, . . . } . (162)

Due to the relation Cov(wi,wi) = Var(wi), the diagonal elements
represent the respective variances of the elements w1, . . . ,wn of the
process noise vector w. The other elements are the covariances of all
possible pairs of the random variables of the process noise vector. The
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noise processes interfering with the individual Euler angles and the
velocity inputs, respectively, are modelled as uncorrelated so that the
remaining elements of Qk are zero.

With the process model of Equation 161 at hand, we can now state
the transition prior probability distribution, which is employed in the
computation of the importance weights of the unscented particle filter,
as a Gaussian with mean xk −φk−1(xk−1,uk−1, 0) and covariance
Qk,

p(xk | xk−1,uk−1) = N
(
xk −φk−1(xk−1,uk−1, 0),Qk

)
. (163)

3.2.2 The Measurement Model

Provided the position of nz landmarks is known, theoretically the
position of the robot can be computed from the distances between
the robot and multiple landmarks using lateration. Considering the
distance between the robot and one landmark alone, possible positions
the robot may have are situated on a sphere around the landmark,
with its radius equal to the distance to the robot. In order to unam-
biguously determine the exact position in three-dimensional space
four landmarks are required. Then, their surrounding spheres with
the respective radii di ideally intersect in one point identical with
the robot’s position. Mathematically, lateration can be expressed as
finding the solution of the following system of quadratic equations:

(x− xi)
2 + (y− yi)

2 + (z− zi)
2 = d2i , i ∈ {1, . . . ,nz} , (164)

where (x,y, z) are the coordinates of the robot and (xi,yi, zi) are the
known coordinates of the i-th of nz landmarks in three-dimensional
space, respectively. For the sake of clarity of presentation, Figure
26 depicts exemplary the scenario for the determination of the two-
dimensional position (x,y) of a robot and the known positions (xi,yi)
of the landmarks i ∈ {1, 2, 3}.

Due to measurement noise, the radii morph into concentric spheres
around the respective landmarks, so that there is not a precise in-
tersection point anymore and simply solving a system of quadratic
equations is not sufficient to determine the robot’s position. Incorpor-
ating the uncertainty into the model using the noise term vk yields
the measurement vector zk ∈ Rnz of the modelled system as

zk =




d1,k

d2,k
...

dnz,k



=




√
(xk − x1)2 + (yk − y1)2 + (zk − z1)2√
(xk − x2)2 + (yk − y2)2 + (zk − z2)2

...√
(xk − xnz)

2 + (yk − ynz)
2 + (zk − znz)

2



+ vk ,

(165)
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Figure 26: Trilateration: depicted is the determination of the two-dimensional
position (x,y) of a robot from the distances di to the three land-
marks i ∈ {1, 2, 3} with known positions (xi,yi).

where the di-s represent the distance between the robot and the i-th
of nz landmarks and the measurement noise process vk ∈ Rnv is
modelled as zero-mean Gaussian white noise. The length nz of the
measurement vector is determined by the number of landmarks and
is kept variable intentionally for experiments with different numbers
of landmarks. The constant measurement noise covariance matrix
Rk ∈ Rnv×nv is given by

Rk =




σ2d 0 0 0

0 σ2d 0 0
...

. . .
...

0 0 0 σ2d




. (166)

With the measurement model of Equation 165 at hand, we can now
state the likelihood function to be a Gaussian with mean zk−hk(xk, 0)
and covariance Rk,

p(zk | xk) = N
(
zk −hk(xk, 0),Rk

)
. (167)

3.3 the bounded-error model

In bounded-error state estimation, all model and measurement errors
are assumed to vary around a central value within certain bounds
[90]. Only when the bounds are chosen conservatively enough, the
estimation result may be trusted. Under real-life conditions, however,
the measurement error is usually normally distributed and therefore
inherently unbound. The probability that a normal deviate x, with
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mean µ and standard deviation σ, lies in the range between µ− ξσ

and µ+ ξσ, with ξ ∈ R+, can be computed using the Gauss error
function as

Pr
(
(x > µ− ξσ)∧ (x < µ+ ξσ)

)
= erf

(
ξ√
2

)
=

1√
π

∫ ξ√
2

− ξ√
2

e−t
2

dt .

(168)
To obtain a desired confidence interval, we inflate the real quantity x
to an interval [x] as follows:

[x] = [x− ξσ, x+ ξσ
]

. (169)

For ξ = 3 this leads to a probability that the interval covers a sample
from the above mentioned Gaussian distribution of 99.73 percent.

3.3.1 The System Model

The robot’s interval state vector [xk] ∈ [R]nx=3 is given by

[xk] =
[[
xk, xk

]
,
[
y
k

,yk
]
,
[
zk, zk

]]T
, k ∈ {0, 1, 2, . . . } . (170)

To predict the interval position [xk], given the previous interval posi-
tion [xk−1], it requires an inclusion function [φk] : [R]nx → [R]nx of
the state transition function φk. A straightforward way to obtain an
inclusion function is replacing each expression in the system model
given by Equation 161 by its natural interval extension. Then we have

[xk] = [φk−1]
(
[xk−1], [uk−1], [wk−1]

)
= [xk−1]

+[Tbw]
(
[ψk−1] + [wψ,k−1], [θk−1] + [wθ,k−1], [φk−1] + [wφ,k−1]

)

·
(
[u

[b]
k−1] + [wv,k−1]

)
Ts, k ∈ {1, 2, 3, . . . } ,

(171)

where [Tbw] denotes the natural interval extension of the transforma-
tion matrix Tbw of Equation 138.
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3.3.2 The Measurement Model

Extending Equation 178 to intervals as follows, with vk = 0, yields
the bounded-error measurement model [hk] : [R]nx → [R]nz , which is
used to construct the set Ck of nz constraints of the form

[zk] =




[
d1,k − ξσd,d1,k + ξσd

]
[
d2,k − ξσd,d2,k + ξσd

]
...[

dnz,k − ξσd,dnz,k + ξσd
]




= [hk]
(
[xk], 0

)

=




√
([xk] − x1)2 + ([yk] − y1)2 + ([zk] − z1)2√
([xk] − x2)2 + ([yk] − y2)2 + ([zk] − z2)2

...√
([xk] − xnz)

2 + ([yk] − ynz)
2 + ([zk] − znz)

2




.

(172)

This model is motivated by the following notion. Given a noisy meas-
urement zk the true distance lies in the interval [zk], with a probability
that can be determined by Equations 168. The concentric spheres de-
scribed by the above constraints will overlap in certain regions of the
search space. The region that is confined by the respective inner and
outer sphere satisfies all the constraints and thus contains feasible
robot positions. On the other hand, any point that lies outside does
not satisfy the constraints and is therefore no solution.

3.4 constrained particle filters

The above Bayesian filtering techniques have been developed for un-
constrained conditions, which means that essentially any estimate in
the state space is a possible solution to the filtering problem. However,
in practical applications additional information about a process in the
form of constraints are commonly encountered [91]. These constraints
may stem from physical laws, model restrictions or technological
limitations [92]. Taking into account such important supplementary
information about the state may improve the state estimation perform-
ance [93]. The aim of constrained Bayesian filtering then is to find
an estimate of the posterior probability distribution pC(xk |Zk,Uk−1)
subject to the constraints,

pC(xk |Zk,Uk−1) = p(xk |Zk,Uk−1, xk ∈ Sk)

=




ζ−1k p(xk |Zk,Uk−1) if xk ∈ Sk

0 otherwise
,

(173)
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with the normalising constant

ζk = Pr(xk ∈ Sk |Zk,Uk−1) =
∫

Sk

p(xk |Zk,Uk−1)dxk (174)

and the set Sk of states satisfying the constraints, according to Equation
127.

3.4.1 Clipping

A very simple approach to satisfy linear constraints is clipping, which
denotes mapping a point estimate lying outside the constrained region
into it or project it right onto the boundary [94]. We will use clipping
for all six filters used for the experiments described in the next chapter.
That is, whenever a particle or a sigma point lies outside the map,
which is assumed to have linear boundaries parallel to one of the
three axes of the world coordinate system, it is projected onto the
boundary. Especially the covariance estimate of the unscented Kalman
filter is positively influenced by mapping the sigma points instead
of the estimate itself [95]. In our estimation scenario, the clipping
approach reflects a plausibility assessment of the environment. For
instance, given a map as for the experiments below that assumes a
position in z-direction of 0metres to be the sea surface, the underwater
robot cannot be located above it, so that z 6 0 holds for every position
estimate.

3.4.2 Non-linear Constraints

When dealing with multiple non-linear interval constraints according
to Equation 172, the projection on the boundary may not be straight-
forward in practice. Instead, one may simply discard particles outside
the constrained regions and thereby trim the conditional probability
distribution of the state with respect to the constraints, whilst pre-
serving the shape of the PDF within the boundaries [96]. This method
has moderate computational demands and generally leads to an im-
provement of the estimation accuracy [97]. Modifying the generic
particle filter so that it discards particles that violate constraints, we
adopt the acceptance-rejection scheme in [98],

w
(i)
k = L

(i)
k

(
x̂
(i)
k

)
w

(i)
k−1

p
(
zk | x̂

(i)
k

)
p
(
x̂
(i)
k | x

(i)
k−1,uk−1

)

π
(
x̂
(i)
k |X

(i)
k−1,Zk,Uk−1

) , i ∈ {1, . . . ,N} ,

(175)
with

L
(i)
k

(
x̂
(i)
k

)
=




1 if x̂(i)k ∈ Sk

0 otherwise
(176)
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Hence, the particles with zero weight will die out while resampling.

3.5 the new localisation algorithms

We shall now describe the four newly proposed filter algorithms, all
of which share the following features. The initial search space [x0] ∈
[R]nx encompasses the entire map. The sequence of the ns control
inputs and measurements is denoted by Uns and Zns , respectively.
The probabilistic system model φk : Rnx → Rnx as well as the
bounded-error system model [φk] : [R]nx → [R]nx and measurement
model [hk] : [R]nx → [R]nz are assumed to be constant, therefore we
can omit the index k.

3.5.1 Initialisation

A robot solving the wake-up robot problem, by definition, does not
know where it is and is aware of this fact. Thus, in the beginning
of conventional Monte Carlo localisation using a bootstrap filter or
an unscented particle filter, hypotheses of the robot’s position are
spread over the entire map. However, when additional information
that confines the initial search space is available it may be used to
restrict the spreading of particles to regions that potentially contain the
robot’s true position and therefore increase the localisation accuracy.

A possible way of generating particles in the first iteration is to check
whether a particle is inside a box or subpaving obtained by means of
interval analysis and replacing it in case it is outside [27, 28, 99]. This
may take a long time depending on the shape of the subpaving. A
more efficient approach is uniformly generating particles inside the
hull of a subpaving and killing the ones that are inconsistent with the
constraints used for the bounded-error localisation by setting their
importance weights to zero [91].

The bounded-error measurement model [h] can be used to construct
a set Ck of nz constraints that are used to narrow down the search
space by means of a contractor or by means of SIVIA. Since the first
measurement, per definition of the Bayesian filter, only comes available
at time step k = 1, this measurement and its associated constraints
are used to contract the search space or obtain a subpaving S̄1 that
approximates the solution set S1, respectively. Figure 27 shows the
result of the SIVIA algorithm in three dimensions with respect to
an exemplary trajectory and ε = 1.5m as well as its interval hull.
Then, the respective contracted box or interval hull of the subpaving,
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Figure 27: The result of the SIVIA algorithm in three dimensions for an
exemplary trajectory and ε = 1.5m depicted in yellow and its
interval hull depicted in green.
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Figure 28: Backpropagated box [x0] in relation to the interval hull [x1] of the
SIVIA subpaving S̄1.
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Figure 29: Uniformly spread initial particles in the backpropagated box [x0].

both denoted by [x1], are propagated backwards by one time step.
Rearranging Equation 171, we have

[xk−1] = [xk]

− [Tbw]
(
[ψk−1] + [wψ,k−1], [θk−1] + [wθ,k−1], [φk−1] + [wφ,k−1]

)

·
(
[u

[b]
k−1] + [wv,k−1]

)
Ts, k ∈ {1, 2, 3, . . . } .

(177)

Plugging in [x1] and the zeroth control input, that is [u
[b]
k−1] = u

[b]
0 ,

results in the box [x0], which is depicted in Figure 28. This box
confines the uniform spreading of equally weighted particles drawn
from p(x0), which constitute the set

{(
x
(i)
0 ,N−1

)}N
i=1

as depicted in
Figure 29. Given this initial distribution, in principle, any standard
Bayesian filter algorithm could be applied.

3.5.2 Detection of Kidnapping

Previous hybrid methods based on Monte Carlo simulation and inter-
val analysis maintain the respective contracted box [27] or subpaving
[28] throughout the whole estimation process. Each particle that does
not satisfy the constraints is replaced by a particle sampled from a
uniform distribution that is confined by the respective bounded-error
estimate or its interval hull. However, instead of generating new
particles at every time step, the ones that are inconsistent with the
constraints can be killed and the remaining ones can be reproduced
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Algorithm 2 PFC (bootstrap particle filter with HC4 contractor)

Input: [x0], Uns , Yns , φ, [φ], [h], ξ > 0

Output:
{
x̂k
}

,
{
Pk
}

, k ∈ {1, . . . ,n}

1: function PFC([x0],Uns ,Yns ,φ, [φ], [h], ξ)
2: for k← 1,ns do
3: Ck ← constructConstraints([h], zk, ξ) . Eq. 172

4: if k = 1 then . initialise filter
5: [xk]← contract([x0], Ck) . contract using HC4

6: [xk−1]← propagateBackwards([xk]) . Eq. 177

7: Pk−1 ← drawParticles(N, [xk−1]) . Eq. 84

8: end if
9: Pk ← propagateParticles(Pk−1) . Eq. 92

10: Wk ← weightParticles(Pk, C) . Eq. 175

11: if
∑
W∈Wk

W = 0 then . restart localisation process
12: go to 6

13: end if
14: Pk ← resample(Pk, Wk) . Eq. 80

15: x̂k ← mean(Pk) . Eq. 89

16: Pk ← covariance(x̂k, Pk) . Eq. 90

17: end for
18: return

({
x̂k
}

,
{
Pk
})

19: end function

while resampling. When all particles have zero weight, that is none
of them satisfy all constraints, there has been a localisation failure.
In other words, the robot has been kidnapped. Then, for the robot a
reasonable action is to perform global localisation over the whole map.
Therefore, the same steps as during the initialisation described in the
previous section are carried out but using the current measurement
instead of the first one. Carrying out a contraction of the search space
or generating a SIVIA subpaving only in the very first iteration and in
the iteration just after kidnapping, respectively, immensely reduces
computational cost while preserving the benefits of bounded-error
state estimation.

3.5.3 Particle Filters with HC4 Contractor

Algorithm 2 depicts the particle filter with contractor (PFC). Initially,
after the construction of the constraints, the search space is contracted
using the HC4 algorithm. The resulting box is propagated backwards
by one time step and particles are spread uniformly within the box.
These particles are propagated by the system model and weighted.
Given there are non-zero weights, resampling is carried out and the
empirical particle mean and covariance is returned. Otherwise, when
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Algorithm 3 UPFC (unscented particle filter with HC4 contractor)

Input: [x0], Uns , Yns , φ, [φ], [h], ξ > 0

Output:
{
x̂k
}

,
{
Pk
}

, k ∈ {1, . . . ,n}

1: function UPFC([x0],Uns ,Yns ,φ, [φ], [h], ξ)
2: for k← 1,ns do
3: Ck ← constructConstraints([h], zk, ξ) . Eq. 172

4: if k = 1 then . initialise filter
5: [xk]← contract([x0], Ck) . contract using HC4

6: [xk−1]← propagateBackwards([xk]) . Eq. 177

7:
(

Pk−1,
{
P
(i)
k−1

})
← drawParticles(N, [xk−1]) . Eq. 84

8: end if
9:

(
Pk,
{
P
(i)
k

})
← ukf(Pk−1,

{
P
(i)
k−1

}
) . Algorithm 11

10: Pk ← sample(Pk,
{
P
(i)
k

}
) . Eq. 99

11: Wk ← weightParticles(Pk, C) . Eq. 175

12: if
∑
W∈Wk

W = 0 then . restart localisation process
13: go to 6

14: end if
15: Pk ← resample(Pk, Wk) . Eq. 80

16: x̂k ← mean(Pk) . Eq. 89

17: Pk ← covariance(x̂k, Pk) . Eq. 90

18: end for
19: return

({
x̂k
}

,
{
Pk
})

20: end function

all weights are zero, the localisation process is restarted by going to
line 5. The filter loop is repeated for each of the ns samples.

Algorithm 3 depicts the unscented particle filter with contractor
(UPFC). Initially, after the construction of the constraints, the search
space is contracted using the HC4 algorithm. The resulting box is
propagated backwards by one time step and particles are spread
uniformly within the box. The respective particle mean and covariance
is propagated by an unscented Kalman filter for each particle, taking
into account the latest measurement. Then, N particles are drawn
from a Gaussian proposal distribution with the respective mean and
covariance, and weighted using the measurement model. Given there
are non-zero weights, resampling is carried out and the empirical
particle mean and covariance is returned. Otherwise, when all weights
are zero, the localisation process is restarted by going to line 5. The
filter loop is repeated for each of the ns samples.

3.5.4 Particle Filters with SIVIA

Algorithm 4 depicts the particle filter with SIVIA (UPFS). Initially, after
the construction of the constraints, a subpaving of the solution set is
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Algorithm 4 PFS (boostrap particle filter with SIVIA)

Input: [x0], Uns , Yns , φ, [φ], [h], ξ > 0, ε > 0

Output:
{
x̂k
}

,
{
Pk
}

, k ∈ {1, . . . ,n}

1: function PFS([x0],Uns ,Yns ,φ, [φ], [h], ξ, ε)
2: for k← 1,ns do
3: Ck ← constructConstraints([h], zk, ξ) . Eq. 172

4: if k = 1 then . initialise filter
5: Xk ← sivia([x0], Ck, ε) . Algorithm 1

6: [xk]← hull(Xk)
7: [xk−1]← propagateBackwards([xk]) . Eq. 177

8: Pk−1 ← drawParticles(N, [xk−1]) . Eq. 84

9: end if
10: Pk ← propagateParticles(Pk−1) . Eq. 92

11: Wk ← weightParticles(Pk, C) . Eq. 175

12: if
∑
W∈Wk

W = 0 then . restart localisation process
13: go to 6

14: end if
15: Pk ← resample(Pk, Wk) . Eq. 80

16: x̂k ← mean(Pk) . Eq. 89

17: Pk ← covariance(x̂k, Pk) . Eq. 90

18: end for
19: return

({
x̂k
}

,
{
Pk
})

20: end function

computed using the SIVIA algorithm. The hull of the subpaving is
propagated backwards by one time step and particles are spread uni-
formly within the box. These particles are propagated by the system
model and weighted. Given there are non-zero weights, resampling
is carried out and the empirical particle mean and covariance is re-
turned. Otherwise, when all weights are zero, the localisation process
is restarted by going to line 5. The filter loop is repeated for each of
the ns samples.

Algorithm 5 depicts the unscented particle filter with SIVIA (UPFS).
Initially, after the construction of the constraints, a subpaving of the
solution set is computed using the SIVIA algorithm. The hull of the
subpaving is propagated backwards by one time step and particles
are spread uniformly within the box. The respective particle mean
and covariance is propagated by an unscented Kalman filter for each
particle, taking into account the latest measurement. Then, N particles
are drawn from a Gaussian proposal distribution with the respective
mean and covariance, and weighted using the measurement model.
Given there are non-zero weights, resampling is carried out and the
empirical particle mean and covariance is returned. Otherwise, when
all weights are zero, the localisation process is restarted by going to
line 5. The filter loop is repeated for each if the ns samples.
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Algorithm 5 UPFS (unscented particle filter with SIVIA)

Input: [x0], Uns , Yns , φ, [φ], [h], ξ > 0, ε > 0

Output:
{
x̂k
}

,
{
Pk
}

, k ∈ {1, . . . ,n}

1: function UPFS([x0],Uns ,Yns ,φ, [φ], [h], ξ, ε)
2: for k← 1,ns do
3: Ck ← constructConstraints([h], zk, ξ) . Eq. 172

4: if k = 1 then . initialise filter
5: Xk ← sivia([x0], Ck, ε) . Algorithm 1

6: [xk]← hull(Xk)
7: [xk−1]← propagateBackwards([xk]) . Eq. 177

8:
(

Pk−1,
{
P
(i)
k−1

})
← drawParticles(N, [xk−1]) . Eq. 84

9: end if
10:

(
Pk,
{
P
(i)
k

})
← ukf(Pk−1,

{
P
(i)
k−1

}
) . Algorithm 11

11: Pk ← sample(Pk,
{
P
(i)
k

}
) . Eq. 99

12: Wk ← weightParticles(Pk, C) . Eq. 175

13: if
∑
W∈Wk

W = 0 then . restart localisation process
14: go to 6

15: end if
16: Pk ← resample(Pk, Wk) . Eq. 80

17: x̂k ← mean(Pk) . Eq. 89

18: Pk ← covariance(x̂k, Pk) . Eq. 90

19: end for
20: return

({
x̂k
}

,
{
Pk
})

21: end function



4
E X P E R I M E N T S

In order to evaluate the performance of the four newly proposed
algorithms in Section 3.5, they were applied to simulated data and the
results were compared to those of the two conventional probabilistic
methods, namely the bootstrap filter as described in Section 2.5.2 and
the unscented particle filter as described in Section 2.5.3. The imple-
mentation and visualisation of the probabilistic and bounded-error
state estimation are described in the following section. Subsequently,
the experimental setup including the robot simulator and the simu-
lated scenarios will be described in detail in Section 4.2, followed by
the performance measures used to validate the algorithms in Section
4.3. Section 4.4 presents the estimation results, which are discussed in
Section 4.5.

4.1 implementation

All six algorithms were implemented in Matlab
® using the IntLab

®

Toolbox [100] for interval computations. The C++ SIVIA implement-
ation with a Matlab

® MEX [101] interface was borrowed from [82].
The entire developed code and the data used for the experiments can
be found on Github [102], a web-based hosting service for distributed
version control using Git. Both code and data are accessible freely for
repetition and comparison as well as for all other scientific purposes.
Each of the results presented below was obtained running a distin-
guished Matlab

® script, which includes the parameterisation of the
respective experiment. The script is contained with the respective data
and results in a subfolder for each experiment. The entire estimation
process including bounded-error localisation, sampling, weighting,
and resampling as described in Section 3.5 was visualised for verifica-
tion purposes and tuning of the filters. The Figures 27, 28 and 29 show
screenshots of the real-time visualisation of the estimation process.

4.2 experimental setup

In the following two sections, we will describe the experimental setup,
including the robot simulator used for the experiments and the three
simulated scenarios.

71



72 experiments

Signal Symbol Standard deviation

Distances σd 0.30 m

Linear velocity σv 0.04 m/s

Euler angles σEul 0.10 °

Table 1: Standard deviations of the simulated data.

4.2.1 Robot Simulator

The raw data of the simulation was generated by Nicola [103], using
the Modular OpenRobots Simulation Engine (MORSE) [104], an aca-
demic robotic simulator based on the Blender Game Engine [87] and
the Bullet Physics Engine [105]. The simulated autonomous under-
water vehicle Redermor [106] was equipped with sensors to measure
its distance to each of nz ∈ {2, 4, 9} landmarks. The simulated vessel
is depicted in Figure 55 in the appendix. The simulator logged the
robot’s nominal linear velocity in its three-dimensional body frame
as well as its orientation with respect to the world frame at a rate of
one sample per second. Both the latter quantities served as a control
input for the system model as described in Section 3.2.1. Moreover, the
true position of the robot was logged and served as a reference in the
validation of the state estimation. The input and measurement data
were distorted by adding zero-mean white Gaussian noise samples
drawn from distributions with standard deviations as depicted in
Table 1.

4.2.2 Simulated Scenarios

The underwater robot started its manoeuvre several metres under
the surface of the sea, sank down to the seabed following a helical
movement and went back up again with an opposite sense of rotation.
Figure 30 shows the entire trajectory, which has a duration of 200

seconds, where the upper left of the trajectory represents the start point
and the upper right represents the end of the simulation. The trajectory
in Figure 31 shows the location where the robot was kidnapped. After
it has sunken down finishing one whole arc of a circle, when projecting
the trajectory on the x-y-plane, the robot is kidnapped and brought
to the opposite side of the original trajectory, virtually skipping the
yellow dashed part of it, as depicted in Figure 31. The kidnapping
after 65 seconds alters the robot’s position and orientation before it
makes its way up in the same manner as in the scenario without
kidnapping and finishes its manoeuvre after 135 seconds in the upper
right corner.
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Figure 30: Simulated three-dimensional trajectory with the start point in the
upper left and the end point in the upper right hand corner.

Landmark x in m y in m z in m

1 54.212 −234.051 −225.619

2 72.673 225.574 −262.043

Table 2: Positions of the landmarks in Scenario 1.

The simulations were carried out with two, four, and nine distin-
guishable landmarks, respectively, in order to test the performance
of the filters with ambiguous measurement data. In each of the three
scenarios, the landmarks were placed in a grid above the seafloor, loc-
ated about 250 metres deep. The individual position of each landmark
was chosen randomly with a standard deviation of 10 metres. Figures
32, 33, and 34 show the trajectory in relation with the two, four, and
nine landmarks, respectively. The positions of the landmarks are given
in Tables 2, 3, and 4 for the respective scenario.

4.3 performance measures

The performance of the algorithms was measured computing the error
ek at time step k as the Euclidean distance between the estimated pos-
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Figure 31: Simulated three-dimensional trajectory with the start point in
the upper left and the end point in the upper right hand corner.
The part of the trajectory that is skipped through kidnapping is
depicted as a yellow dashed line.

Landmark x in m y in m z in m

1 −236.365 −226.664 −233.550

2 231.643 −242.535 −257.183

3 −255.960 226.613 −231.048

4 247.786 209.724 −289.594

Table 3: Positions of the landmarks in Scenario 2.
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Figure 32: Three-dimensional trajectory in relation with the two landmarks
spread over the seabed in Scenario 1.
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Figure 33: Three-dimensional trajectory in relation with the four landmarks
spread over the seabed in Scenario 2.
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Figure 34: Three-dimensional trajectory in relation with the nine landmarks
spread over the seabed in Scenario 3.

Landmark x in m y in m z in m

1 −258.443 −279.902 −246.641

2 −1.464 −256.392 −229.858

3 265.583 −256.648 −234.381

4 −250.721 −29.613 −241.389

5 −10.034 9.951 −278.862

6 259.375 2.562 −239.162

7 −267.623 252.185 −256.285

8 12.539 251.370 −224.841

9 259.698 225.658 −263.047

Table 4: Positions of the landmarks in Scenario 3.
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ition x̂k = [x̂k, ŷk, ẑk] and the true position xk = [xk,yk, zk] computed
by the simulator,

ek =
√
(x̂k − xk)2 + (ŷk − yk)2 + (ẑ− zk)2 . (178)

Given the entire sequence of estimated states X̂ns = {x̂k}
ns
k=1, the

root-mean-square error RMSE
(
X̂ns

)
is given by

RMSE
(
X̂ns

)
=

√√√√ 1

ns

ns∑

k=1

e2k . (179)

In addition to the RMSE, the initial error e1 was assessed. The experi-
ments were carried out with 100000 particles for the PF, PFC, and PFS

and 1000 particles for the UPF, UPFC, UPFS. In order to obtain repres-
entative results, each of the six filters was applied to the respective
estimation task at hand in a hundred runs.

4.4 results

In the following, the results of the experiments described above are
presented. For each of the three scenarios there are six figures, three
for the respective scenario with kidnapping, and three without kid-
napping. Each of the groups of three figures consists of a box plot of
the estimation error distribution, a plot of the mean error sequence
vs. time, and a magnified plot of the mean error sequence vs. time
depicting the interesting interval with a width of 40 seconds. That is,
the first 40 seconds when solving the wake-up robot problem and the
10 seconds before plus the 30 seconds after kidnapping, when solving
the kidnapped robot problem. The same set of figures is presented in
the appendix for 10 times fewer particles, respectively.

On each box of a box plot, the central mark indicates the median
and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plotted individually
using a red ‘+’ symbol. Points are drawn as outliers if they are greater
than Q25 + l(Q75–Q25) or less than Q25 − l(Q75–Q25), where l is the
maximum whisker length corresponding to approximately ±2.7σ and
99.3 percent coverage if the data are normally distributed.

Plots of the individual runs including the estimated trajectory in
relation with the reference trajectory, the number of particles that
received an importance weight of zero, and .mat-files containing the
estimation results, with and without kidnapping, respectively, can be
found on GitHub [102]. In addition to that, all exact results of the
individual runs and of the entire experiments, including the time of
convergence and the root-mean-squared errors, can be found in the
log files provided.
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4.4.1 Results with 2 Landmarks

Figures 35 - 37 depicting the estimation results for Scenario 1.
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Figure 35: Box plot of the estimation errors in Scenario 1 (logarithmic scale).
PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS: 1000 particles.



4.4 results 79

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Ti
m

e
in

s

Errorinm

Er
ro

r
PF

Er
ro

r
U

PF
Er

ro
r

PF
C

Er
ro

r
U

PF
C

Er
ro

r
PF

S
Er

ro
r

U
PF

S

Figure 36: Mean estimation error over time in Scenario 1. PF, PFC, PFS: 10000

particles. UPF, UPFC, UPFS: 1000 particles.
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Figure 37: First 40 seconds of the mean estimation error over time in Scenario
1. PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS: 1000 particles.
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4.4.2 Results with 2 Landmarks and Kidnapping

Figures 38 - 40 depicting the estimation results for Scenario 1 with
kidnapping.
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Figure 38: Box plot of the estimation errors in Scenario 1 with kidnapping
(logarithmic scale). PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS:
1000 particles.



82 experiments

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

Ti
m

e
in

s

Errorinm
Er

ro
r

PF
Er

ro
r

U
PF

Er
ro

r
PF

C
Er

ro
r

U
PF

C
Er

ro
r

PF
S

Er
ro

r
U

PF
S

K
id

na
pp

in
g

Figure 39: Mean estimation error over time in Scenario 1 with kidnapping.
PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS: 1000 particles.
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Figure 40: First 30 seconds of the mean estimation error over time after
kidnapping in Scenario 1. PF, PFC, PFS: 10000 particles. UPF, UPFC,
UPFS: 1000 particles.
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4.4.3 Results with 4 Landmarks

Figures 41 - 43 depicting the estimation results for Scenario 2.
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Figure 41: Box plot of the estimation errors in Scenario 2 (logarithmic scale).
PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS: 100 particles.
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Figure 42: Mean estimation error over time in Scenario 2 (logarithmic scale).
PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS: 100 particles.
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Figure 43: First 40 seconds of the mean estimation error over time in Scenario
2 (logarithmic scale). PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS:
100 particles.
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4.4.4 Results with 4 Landmarks and Kidnapping

Figures 44 - 46 depicting the estimation results for Scenario 2 with
kidnapping.
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Figure 44: Box plot of the estimation errors in Scenario 2 with kidnapping
(logarithmic scale). PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS:
100 particles.
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Figure 45: Mean estimation error over time in Scenario 2 with kidnapping
(logarithmic scale). PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS:
100 particles.
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Figure 46: First 30 seconds of the mean estimation error over time after
kidnapping in Scenario 2 (logarithmic scale). PF, PFC, PFS: 10000

particles. UPF, UPFC, UPFS: 100 particles.
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4.4.5 Results with 9 Landmarks

Figures 47 - 49 depicting the estimation results for Scenario 3.
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Figure 47: Box plot of the estimation errors in Scenario 3 (logarithmic scale).
PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS: 100 particles.
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Figure 48: Mean estimation error over time in Scenario 3 (logarithmic scale).
PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS: 100 particles.
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Figure 49: First 40 seconds of the mean estimation error over time in Scenario
3 (logarithmic scale). PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS:
100 particles.
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4.4.6 Results with 9 Landmarks and Kidnapping

Figures 50 - 52 depicting the estimation results for Scenario 3 with
kidnapping.
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Figure 50: Box plot of the estimation errors in Scenario 3 with kidnapping
(logarithmic scale). PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS:
100 particles.
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Figure 51: Mean estimation error over time in Scenario 3 with kidnapping
(logarithmic scale). PF, PFC, PFS: 10000 particles. UPF, UPFC, UPFS:
100 particles.
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Figure 52: First 30 seconds of the mean estimation error over time after
kidnapping in Scenario 3 (logarithmic scale). PF, PFC, PFS: 10000

particles. UPF, UPFC, UPFS: 100 particles.
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Wake-up r. p. Kidnapped r. p.

PF PFC PFS PF PFC PFS

Median error in m 18.6 9.9 5.6 79.6 20.0 9.8

Improvement in % – 47 70 – 75 88

Table 5: Median errors for the bootstrap filters in Scenario 1.

4.5 discussion

Given the results presented in the previous section, we will now
discuss them in detail, first comparing the new against the respective
conventional localisation algorithms in the following two sections and
then comparing the bootstrap particle filters against the unscented
particle filters in Section 4.5.3. Finally, we will discuss the differences
between the results of the filters using the HC4 contractor and those
using SIVIA.

4.5.1 Constraint vs. Unconstraint Bootstrap Filters

First, the constraint bootstrap filters (PFC, PFS) and the unconstrained
bootstrap filter (PF) are contrasted in the respective localisation scen-
arios. Comparing the median estimation error of the bootstrap particle
filter with HC4 contractor and with SIVIA, respectively, against the
median error of the conventional bootstrap filter, one can see that both
new filter algorithms consistently outperform the conventional one in
each of the experiments, while the median error of the PFS is smaller
or equal to that of the PFC (cf. box plots in Figures 35, 38, 41, 44, 47,
50). However, the difference in median errors is less pronounced for
an increased number of landmarks, as can be seen in the box plots
for the scenarios with four and nine landmarks in Figures 41, 44, 47,
50. In these scenarios, in turn, the initial estimation error and the
error right after kidnapping is reduced significantly (cf. mean error
plots in Figures 43, 46, 49, 52). It should be noted that in these figures
the higher error of the conventional bootstrap filter after convergence
is due to different tuning of the filters, which takes into account the
confined search space in case of the hybrid filter algorithms.

In Scenario 1, with a median error of 9.9 metres for the PFC and
18.6 metres for the conventional bootstrap filter, this represents an
improvement of 47 percent. The PFS achieves a median error of less
than 5.6 metres, which makes up for an improvement of 70 percent
(cf. box plot in Figure 35). When kidnapping the robot in Scenario 1,
the respective improvements are 75 percent for the PFC and 88 percent
for the PFS, given median errors of 79.6 metres (PF), 20 metres (PFC),
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Wake-up r. p. Kidnapped r. p.

PF PFC PFS PF PFC PFS

Mean initial error in m 5.8 5.1 0.5 80.8 4.7 0.6

Improvement in % – 13 91 – 94 99

Table 6: Mean initial errors and errors after kidnapping for the bootstrap
filters in Scenario 2.

and 9.8 metres (PFS), which can also be seen in the box plot in Figure
38. The median errors and the respective improvement in percent is
contrasted in Table 5.

In the presence of four landmarks, the mean initial estimation error
is reduced by 13 percent for the PFC and by 91 percent for the PFS,
given the mean initial errors of 5.8 metres (PF), 5.1 metres (PFC), and
0.5 metres (PFS), which can be seen in the mean error plot in Figure
43. The major difference in error between the PFC and the PFS will
be discussed in Section 4.5.4. The mean first error after kidnapping
is reduced by 94 percent for the PFC and by 99 percent for the PFS,
given the mean initial errors of 80.8 metres (PF), 4.7 metres (PFC),
and 0.6 metres (PFS), which are depicted in the mean error plot in
Figures 46. The mean initial errors and the respective improvement
in percent are contrasted in Table 6. The lower initial errors and the
faster convergence of the two hybrid bootstrap filters are also reflected
in the number of outliers in the box plots depicted in Figures 41 and
44.

In Scenario 3, the error of the PFC and PFS is smaller than 60 centi-
metres throughout the whole estimation process. That is, both hybrid
bootstrap filters converge instantly, as can be seen in the mean error
plots in Figure 49 without kidnapping and in Figure 52 with kid-
napping. In contrast, due to the high initial errors, the conventional
bootstrap filter only achieves an upper error bound of 16.8 metres
without kidnapping (cf. box plots in Figures 47) and of 86.7 metres
with kidnapping (cf. box plot in Figures 50). The major improvement
is due to the bounded-error estimation that is carried out when per-
forming global localisation in the beginning and the reliable detection
of kidnapping, which restarts the global localisation process likewise.
The individual mean initial errors and the respective improvement in
percent are contrasted in Table 7 (cf. also mean error plots in Figures
49, 52).



98 experiments

Wake-up r. p. Kidnapped r. p.

PF PFC PFS PF PFC PFS

Mean initial error in m 6.5 0.36 0.36 81.2 0.24 0.21

Improvement in % – 94 94 – 99 99

Table 7: Mean initial errors and errors after kidnapping for the bootstrap
filters in Scenario 3.

4.5.2 Constraint vs. Unconstraint Unscented Particle Filters

In this section, the constraint unscented particle filters (UPFC, UPFS)
are compared against the unconstrained unscented particle filter (UPF).
With two available landmarks, the median estimation error of the
constraint unscented particle filters is up to 30 metres smaller than
that of the conventional unscented particle filters (cf. box plot in
Figure 35), while both UPFC and UPFS have similar initial estimation
errors before they slightly drift apart, as can be seen in Figure 36. This
can be explained by the probabilistic nature of the filters. Looking at
the results of the individual runs in the GitHub repository [102], one
can observe the high error variance of the UPFS.

When four or nine landmarks are available, the median errors of
both the UPFC and the UPFS are similar to that of the UPF (cf. box plots
in Figures 41, 44, 47, 50). However, in these scenarios the mean initial
estimation error as well as the mean first error after kidnapping is
significantly reduced by the bounded-error state estimation (cf. mean
error plots in Figures 43, 46, 49, 52). Both the lower initial errors and
the faster convergence of the two hybrid unscented particle filters is
also reflected in the number of outliers in the box plots depicted in
Figures 41, 44, 47, 50.

In the presence of four landmarks, the mean initial estimation error
is reduced by 64 percent for the UPFC and by 92 percent for the UPFS,
given the mean initial errors of 6.4 metres (UPF), 2.3 metres (UPFC), and
0.5 metres (UPFS), which can be seen in the mean error plot in Figure
43. The mean first error after kidnapping is reduced by 76 percent for
the UPFC and by 98 percent for the UPFS, given the mean initial errors
of 49.4 metres (UPF), 12.1 metres (UPFC), and 0.7 metres (UPFS), which
are depicted in the mean error plot in Figures 46. The mean initial
errors and the respective improvement in percent are contrasted in
Table 8.

In Scenario 3, the error of the UPFC and UPFS is always smaller
than 70 cm (Figures 47, 50), whereas the upper error bound remains
high for the conventional unscented particle filter at 23.3 metres with
kidnapping and 17.6 metres without kidnapping. Again, this is due
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Wake-up r. p. Kidnapped r. p.

UPF UPFC UPFS UPF UPFC UPFS

Mean initial error in m 6.4 2.3 0.5 49.4 12.1 0.7

Improvement in % – 64 92 – 76 98

Table 8: Mean initial errors and errors after kidnapping for the unscented
particle filters in Scenario 2.

Wake-up r. p. Kidnapped r. p.

UPF UPFC UPFS UPF UPFC UPFS

Mean initial error in m 3.7 0.4 0.4 23.2 0.3 0.3

Improvement in % – 89 89 – 99 99

Table 9: Mean initial errors and errors after kidnapping for the unscented
particle filters in Scenario 3.

to the reduction in the size of the initial search space achieved by the
bounded-error estimation. The mean initial errors and the respective
improvement in percent are contrasted in Table 9.

4.5.3 Bootstrap Filters vs. Unscented Particle Filters

When comparing the bootstrap particle filters (PF, PFC, PFS) against
the unscented particle filters (UPF, UPFC, UPFS), the results confirm
the theory. If the likelihood is very peaked, given very accurate
measurements and an unambiguous scenario like Scenario 2 or 3, the
unscented particle filter and its constrained counterparts make better
use of the existing particles by incorporating the latest measurement
into the proposal distribution. As can be seen in the mean error plots
in Figures 43, 46, 49, 52, the mean estimation error of the unscented
particle filters decreases faster than that of the bootstrap particle filters,
since particles are actively moved towards the peak of the likelihood
function. Especially when using a contractor, whose resulting box in
Scenario 2 has still a considerable volume, the unscented particle filter
can improve the estimation accuracy in the beginning of the global
localisation process. Figure 43 shows how the mean initial error is
2.3 metres for the UPFC in contrast to 5 metres for the PFC, since the
UPFC incorporates the first measurement when propagating the initial
particle distribution. In addition to that, the UPFC increases the speed
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of convergence. The mean estimation error falls below 1 metre in 7

seconds for the PFC, whereas the UPFC only takes 1 second.
When nine landmarks are visible, the constrained unscented particle

filters do not noticeably improve the estimation accuracy when com-
pared to the constrained bootstrap filters. The mean estimation errors
of the PFC, UPFC, PFS, and UPFS are consistently below 70 centimetres,
as can be seen in the box plots in Figures 47, 50 and the mean error
plots in Figures 48, 51). This can be explained by the very narrow box
that confines the initial set of uniformly spread particles. Given such
narrow region, particles are already close to the peak of the likelihood
function and the overlap of the proposal distribution and the posterior
distribution is already large, due to the bounded-error estimation. The
lower bound in the median error of approximately 20 centimetres
is to be explained by the finitely accurate measurements. It may be
possible to lower it by more accurate measurements, but using an
increased number of particles or more elaborate filtering techniques
will presumably not improve the estimation accuracy further, which
for many practical applications appears to be sufficient.

When only two landmarks are available, that is the measurements
are ambiguous and a large region of the state space has a high obser-
vation likelihood, the three unscented particle filters fail to converge
quickly (cf. mean error plots in Figures 36, 39). As opposed to the
bootstrap particle filters, which merely move the particles according to
the system model, the unscented particle filters actively move particles
to regions of high likelihood. However, if the likelihood is not con-
centrated in certain regions of the search space, this movement may
in fact be counterproductive. In those unambiguous scenarios, the
bootstrap filter indeed benefits from the fact that it only moves the
particles according to the system model, so that physical movement
of the robot adds information when the measurements themselves
do not provide sufficient information to unambiguously localise the
robot. In other words, when one does not know precisely enough
where to move particles to, regarding the observations, one should
merely move according to the system model.

In summary, the more information is available to move particles to
regions of high likelihood, the more pronounced the improvement of
an unscented particle filter will be. However, with a box estimate that
has sufficiently small volume already and with an accurate system
model, the effect may be insignificant.

4.5.4 HC4 Contractor vs. SIVIA

The SIVIA algorithm may find a better approximation of the solution
set described by the constraints than the contractor, especially when
its shape strongly deviates from that of a cuboid in three-dimensions
or an nx-orthotope for higher dimensional state spaces. However,
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since we use the hull of the SIVIA subpaving as a confinement for
the spreading of particles, in practice the difference may be minor,
especially for an increased number of landmarks. This is depicted in
Figures 53 and 54, which compare the interval hull [x1] of the SIVIA

subpaving with the contracted box, here denoted with [x ′1], both based
on the first measurement in Scenario 1 and 3, respectively. The results
show that the more information in terms of landmarks is available,
the less marked the difference in volume and therefore the impact on
the increase in estimation accuracy will be.

The box plots in Figures 47 and 50 show very similar errors for
both the contractor and SIVIA in Scenario 3, while the box plots in
Figure 41 and 44 indicate a difference in the error distribution for
the contractor and SIVIA in Scenario 2. In particular, the number
of outliers is reduced, as the initial errors are lower and therefore
convergence takes place more rapidly. The volume of the contracted
box is usually larger than that of the hull, but relating the difference
in size to the vastly larger computational demands of SIVIA, for a
practical application the difference may be insignificant and remains
to be tested experimentally in a specific localisation scenario.



5
C O N C L U S I O N A N D F U T U R E W O R K

After an introduction into the subject matter, we have elaborated
upon the theoretical foundations of probabilistic filtering and interval
analysis. Subsequently, we presented a detailed description of the
newly proposed filter algorithms. On the basis of the experiments
and their results in the previous chapter, in this chapter we shall now
conclude and present possible future work in Section 5.2.

5.1 conclusion

Localisation is a fundamental problem in mobile robotics. When
creating mobile robots that operate autonomously, possibly without
any human supervision, accurate self-localisation is one of the fun-
damental abilities such robots should possess. At the same time,
computational cost is a critical feature for many practical applications,
which causes a natural dilemma between the localisation accuracy and
the number of particles in real-life Monte Carlo localisation. Thus, it is
desirable to make good use of particles by moving them to regions of
the search space that are associated with a high observation likelihood.

Motivated by the above dilemma, we presented four new hybrid
localisation algorithms based on non-linear bounded-error state es-
timation and probabilistic filtering. The rationale behind these new
algorithms is to only perform Monte Carlo localisation over a limited
region of the search space. Both a bootstrap filter and an unscen-
ted particle filter was combined with two bounded-error estimators,
namely the forward-backward contractor and the Set Inverter via
Interval Analysis, respectively.

As opposed to existing hybrid localisation approaches based on
Monte Carlo simulation and interval analysis, in the new algorithms
the bounded-error state estimate is not maintained throughout the
whole estimation process, so as to save computational cost. Instead,
additionally available information in the form of constraints based
on geometrical considerations of the environment were incorporated
in the Bayesian filters in order to improve the accuracy throughout
the estimation process and to detect kidnapping. The bounded-error
estimate is only computed in the beginning when solving the wake-up
robot problem or after kidnapping. In comparison with the hybrid
approaches in [27] and [28], the additional computational cost for the
bounded-error state estimation is reduced drastically by not main-
taining the box estimate throughout the entire estimation process,
while the benefits in terms of an increase in the localisation accuracy
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are preserved. Given a sequence of 200 measurements, like in the
experiments above, when computing position estimates for the entire
sequence of measurements, the bounded-error estimation is carried
out once instead of 200 times, which demonstrates the potential for sav-
ing computational cost. When solving the kidnapped-robot problem,
the reduction depends on the number of kidnappings. In the simu-
lated scenarios, with one kidnapping per trajectory, the bounded-error
position estimate is computed twice instead of 200 times.

Evaluating the performance of the new algorithms in various sim-
ulated underwater robot localisation scenarios, we have shown that
the hypotheses are true and that the newly proposed algorithms are
generally able to solve the wake-up robot problem as well as the
kidnapped robot problem more accurately, when compared to conven-
tional unconstrained probabilistic filtering, with an improvement of
up to 88 percent in the median estimation error when compared to
conventional filtering methods. In addition to that, the mean initial
estimation error is significantly reduced by up to 94 percent and the
mean error after kidnapping is reduced by up to 99 percent. The
improvement is particularly pronounced when four or nine landmarks
are available.

When the observation likelihood is very peaked, due to very accur-
ate measurements, and when a sufficiently large number of landmarks
is available to unambiguously determine the robot’s position, the hy-
brid unscented particle filter performs as well as the hybrid bootstrap
filter or better. Especially when the resulting box of the bounded-error
localisation has a relatively large volume, the constrained unscen-
ted particle filters improve the estimation accuracy in the beginning
and increase the speed of convergence, when compared to the three
bootstrap filters.

With four or more landmarks, the bootstrap filter with SIVIA and
the unscented particle filter with SIVIA deliver a very accurate position
estimate with errors always smaller than 70 centimetres. If computa-
tional cost is a critical feature and a slightly higher initial error that
decreases fast is tolerable in a certain application scenario, the two
filters with the forward-backward contractor (PFC, UPFC) are the filters
of choice, as the contractor is computationally less demanding than
SIVIA. All four new algorithms detected kidnapping reliably in all the
experiments so that the respective improvement after kidnapping is
roughly according to that when solving the wake-up robot problem.

The four new localisation algorithms are not limited to underwater
robot localisation but instead are applicable to any landmark-based
localisation scenario. Of course, an estimation of the robot’s pose or
other state variables that are related to the position and orientation,
such as the velocity, can easily be integrated in the algorithms as well.
We shall now identify possible future work in order to further improve
the proposed localisation algorithms.
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5.2 future work

If the confined region obtained by bounded-error state estimation is
narrow enough, the problem may be regarded as a tracking problem.
In the scenario that contained nine landmarks, the volume of the con-
tracted box or subpaving suggests that a uni-modal distribution may
be a sufficiently accurate approximation of the true posterior prob-
ability distribution. Possible alterations of the proposed algorithms
are using an unscented Kalman filter together with interval analysis
in order to reduce computational cost. After a bounded-error state
estimation algorithm has narrowed down the search space to a smaller
region, a truncated unscented Kalman filter [107] could be utilised
to obtain a trimmed Gaussian posterior probability distribution over
the state. These modifications require one subpaving with a volume
smaller than some predefined threshold.

If this condition is not fulfilled the proposed particle filter can
be utilised until the particle variance is lower than some threshold.
One may conclude that the filter has converged and that tracking is
appropriate. Then, the particle filter could be replaced dynamically
by a parameterised filter such as the unscented Kalman filter. All
four hybrid localisation algorithms are designed so that any filter that
matches the Bayesian framework can be plugged in easily to replace
the respective particle filter.

Furthermore, it would be desirable to extend the new localisation
algorithms so that they work with indistinguishable landmarks. In-
stead of a fixed number of landmarks, using a varying number at each
time step would increase the freedom of application to a wider class
of localisation problems and would map the inherently limited range
of distance measurements in practice.

Regarding the bounded-error state estimator, an algorithm based on
relaxed intersections, such as the Robust SIVIA algorithm [108], may
be used in real-life scenarios where the measurement data can contain
outliers that would cause an empty solution set with the conventional
SIVIA algorithm.

In order to avoid the slow convergence of the UPF when only two
landmarks are available, the influence of the latest measurement on
the proposal distribution can be influenced by varying the measure-
ment noise covariance matrix depending on the number of landmarks
present. Then, when a sufficient number of landmarks is available
but the volume of a contracted box or SIVIA hull is still large, the
benefits of the unscented particle filter would manifest, whereas when
the likelihood is not very peaked, a high measurement covariance
value will dampen the impact of the unscented Kalman filter in the
generation of the proposal distribution, so that the filter behaves like
a bootstrap particle filter in such scenario.
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Photo of the Simulated Underwater Robot

Figure 55: The autonomous underwater vehicle Redermor, developed by
GESMA (Groupe d’Etude Sous-Marine de l’Atlantique).

Additional Results in Scenario 1 with 2 Landmarks

Table 10 and 11 list the figures depicting the estimation results for
Scenario 1, with and without kidnapping, respectively.

Additional Results in Scenario 2 with 4 Landmarks

Table 12 and 13 list the figures depicting the estimation results for
Scenario 2, with and without kidnapping, respectively.

Additional Results in Scenario 3 with 9 Landmarks

Table 14 and 15 list the figures depicting the estimation results for
Scenario 3, with and without kidnapping, respectively.
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Box
plots

Mean
errors Number of particles

PF / PFC / PFS UPF / UPFC / UPFS

35 36, 37 10000 1000

56 57, 58 1000 100

Table 10: List of figures depicting the estimation results in Scenario 1.

Box
plots

Mean
errors Number of particles

PF / PFC / PFS UPF / UPFC / UPFS

38 39, 40 10000 1000

59 60, 61 1000 100

Table 11: List of figures depicting the estimation results in Scenario 1 with
kidnapping.

Box
plots

Mean
errors Number of particles

PF / PFC / PFS UPF / UPFC / UPFS

41 42, 43 10000 100

62 63, 64 1000 10

Table 12: List of figures depicting the estimation results in Scenario 2.

Box
plots

Mean
errors Number of particles

PF / PFC / PFS UPF / UPFC / UPFS

44 45, 46 10000 100

65 66, 67 1000 10

Table 13: List of figures depicting the estimation results in Scenario 2 with
kidnapping.
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Box
plots

Mean
errors Number of particles

PF / PFC / PFS UPF / UPFC / UPFS

47 48, 49 10000 100

68 69, 70 1000 10

Table 14: List of figures depicting the estimation results in Scenario 3.

Box
plots

Mean
errors Number of particles

PF / PFC / PFS UPF / UPFC / UPFS

50 51, 52 10000 100

71 72, 73 1000 10

Table 15: List of figures depicting the estimation results in Scenario 3 with
kidnapping.
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Figure 56: Box plot of the estimation errors in Scenario 1 (logarithmic scale).
PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 100 particles.
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Figure 57: Mean estimation error over time in Scenario 1. PF, PFC, PFS: 1000

particles. UPF, UPFC, UPFS: 100 particles.
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Figure 58: First 40 seconds of the mean estimation error over time in Scenario
1. PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 100 particles.
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PF UPF PFC UPFC PFS UPFS
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Figure 59: Box plot of the estimation errors in Scenario 1 with kidnapping
(logarithmic scale). PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS:
100 particles.
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Figure 60: Mean estimation error over time in Scenario 1 with kidnapping.
PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10 particles.
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Figure 61: First 30 seconds of the mean estimation error over time after
kidnapping in Scenario 1. PF, PFC, PFS: 1000 particles. UPF, UPFC,
UPFS: 100 particles.
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Figure 62: Box plot of the estimation errors in Scenario 2 (logarithmic scale).
PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10 particles.
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Figure 63: Mean estimation error over time in Scenario 2 (logarithmic scale).
PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10 particles.
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Figure 64: First 40 seconds of the mean estimation error over time in Scenario
2 (logarithmic scale). PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS:
10 particles.
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Figure 65: Box plot of the estimation errors in Scenario 2 with kidnapping
(logarithmic scale). PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10

particles.



120 appendix

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
0
−
2

1
0
−
1

1
0
0

1
0
1

1
0
2

Ti
m

e
in

s

Errorinm
Er

ro
r

PF
Er

ro
r

U
PF

Er
ro

r
PF

C
Er

ro
r

U
PF

C
Er

ro
r

PF
S

Er
ro

r
U

PF
S

K
id

na
pp

in
g

Figure 66: Mean estimation error over time in Scenario 2 with kidnapping
(logarithmic scale). PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10

particles.
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Figure 67: First 30 seconds of the mean estimation error over time after
kidnapping in Scenario 2 (logarithmic scale). PF, PFC, PFS: 1000

particles. UPF, UPFC, UPFS: 10 particles.
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Figure 68: Box plot of the estimation errors in Scenario 3 (logarithmic scale).
PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10 particles.
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Figure 69: Mean estimation error over time in Scenario 3 (logarithmic scale).
PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10 particles.
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Figure 70: First 40 seconds of the mean estimation error over time in Scenario
3 (logarithmic scale). PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS:
10 particles.
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Figure 71: Box plot of the estimation errors in Scenario 3 with kidnapping
(logarithmic scale). PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10

particles.
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Figure 72: Mean estimation error over time in Scenario 3 with kidnapping
(logarithmic scale). PF, PFC, PFS: 1000 particles. UPF, UPFC, UPFS: 10

particles.
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Figure 73: First 30 seconds of the mean estimation error over time after
kidnapping in Scenario 3 (logarithmic scale). PF, PFC, PFS: 1000

particles. UPF, UPFC, UPFS: 10 particles.
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