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A B S T R A C T

The analysis of human gait can assist the diagnosis of diseases, and
can help to assess treatment success in rehabilitation. In order to
estimate the orientation of the human body, inertial sensors have
become increasingly important, as they mitigate the drawbacks of
camera-based motion capture systems. Using a kinematic model of
the leg, the acceleration due to motion was subtracted from the read-
ings of a biaxial accelerometer on the shank, in order to improve
the accelerometer-based pitch angle estimate. This improved estim-
ate was fused with measurements of another biaxial accelerometer
on the thigh, and two uniaxial gyroscopes on the thigh and shank
in an extended Kalman filter. The filter algorithm was applied to
movement data from a real subject, which walked on a treadmill at
different speeds. The filter improved the overall pitch angle estimate
by an average root-mean-square error that was 28.52% smaller than
the one of an existing classical Kalman filter. It was concluded that
motion-based acceleration correction can benefit the accuracy of the
pitch angle estimates, but further testing of the robustness of the filter
algorithm with a larger set of data is proposed. Additionally, a more
complete kinematic model of the leg could further improve the angle
estimates.

iii



P R E FA C E

This thesis was submitted in partial fulfilment of the requirements
for the degree of Bachelor of Science in Electrical Engineering. It de-
scribes the implementation of a new Kalman filter-based orientation
algorithm that improves the estimation of the pitch angles from iner-
tial data of the lower extremities. I took part in the joint research pro-
ject “Human Body Motion Analysis of Patients with Neurodegener-
ative Diseases by Means of Inertial Sensors” between the CITIC-UGR,
Spain, and the Department of Neurology of the Klinikum Großhadern,
which is part of the Ludwig Maximilian University of Munich, Ger-
many. The goal of the overall project was to obtain several gait para-
meters by wearable inertial sensors and validate them against conven-
tional methods, such as cameras in combination with visual markers
and force measuring platforms. Prior to this thesis, I completed a
three-month internship at the CITIC-UGR, in which I worked on the
synchronisation of a force measuring platform with inertial sensors
within the above-mentioned project.

iv



C O N T E N T S

1 introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Kalman Filtering Applied to Orientation Estim-
ation . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.2 Wearable Sensors in Health Care . . . . . . . . . 4

2 orientation estimation using marg sensors 5
2.1 MARG Sensors . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Accelerometers . . . . . . . . . . . . . . . . . . . 5
2.1.2 Gyroscopes . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Magnetometers . . . . . . . . . . . . . . . . . . . 7

2.2 Inertial Measurement Units . . . . . . . . . . . . . . . . 8
2.3 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Transformation Matrix . . . . . . . . . . . . . . . 9
2.4 Projection of the Gravity Vector . . . . . . . . . . . . . . 10
2.5 Integration of the Angular Rate . . . . . . . . . . . . . . 11
2.6 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . 12

3 digital filters 14
3.1 The Filtering Problem . . . . . . . . . . . . . . . . . . . 14
3.2 The Wiener Filter . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Adaptive Filters . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 An Introductory Example . . . . . . . . . . . . . 17
3.4.2 Formulation of the Kalman Filter Equations . . 21
3.4.3 The Extended Kalman Filter . . . . . . . . . . . 23

4 implementation 27
4.1 Initial Situation . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 The GaitWatch System . . . . . . . . . . . . . . . 27
4.2 Theoretical Design . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Kinematic Model . . . . . . . . . . . . . . . . . . 31
4.2.2 Extended Kalman Filter . . . . . . . . . . . . . . 34

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Data Collection Protocol . . . . . . . . . . . . . . 41
4.3.2 Initial Conditions . . . . . . . . . . . . . . . . . . 41
4.3.3 Test Preparation . . . . . . . . . . . . . . . . . . . 41
4.3.4 Test Execution . . . . . . . . . . . . . . . . . . . . 43

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



contents vi

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 conclusion and future work 53
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 53

a appendix 55
a.1 Matlab® Code . . . . . . . . . . . . . . . . . . . . . . . 55

bibliography 71



L I S T O F F I G U R E S

Figure 1 A mass-and-spring accelerometer under differ-
ent conditions: (a) at rest or in uniform motion,
(b) accelerating, and (c) at rest, being exposed
to the gravity g, from [26]. . . . . . . . . . . . . 6

Figure 2 A simple model of a Coriolis vibratory gyro-
scope: A two degree-of-freedom spring-mass-
damper system in a rotating reference frame,
from [27]. . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3 Representation of the body frame, depicted in
red, with respect to the world frame, depic-
ted in blue, from [30]. The body frame was
rotated, by the Euler angles ψ, θ,φ about the
axes z,y ′,X, respectively. . . . . . . . . . . . . . 9

Figure 4 An exemplary coordinate rotation about the z-
axis by an angle ψ, illustrating the orthogonal
projection on the resulting axes x ′,y ′, z ′. . . . . 11

Figure 5 Acceleration seen by the sensor (b) with and
(a) without motion, from [7]. . . . . . . . . . . 12

Figure 6 Block diagram depicting the components in-
volved in state estimation, from [33]. . . . . . . 15

Figure 7 Block diagram representation of the statistical
filtering problem, from [33]. . . . . . . . . . . . 16

Figure 8 Conditional probability density of the position
based on measurement value z1, from [34]. . . 17

Figure 9 Conditional probability density of the position
based on measurement value z2 alone, from [34]. 18

Figure 10 Conditional probability density of the position
based on data z1 and z2, from [34]. . . . . . . . 18

Figure 11 Propagation of conditional probability density,
from [34]. . . . . . . . . . . . . . . . . . . . . . . 20

Figure 12 Block diagram depicting the relation between
a discrete-time dynamical system, its observa-
tion, and the Kalman filter. . . . . . . . . . . . . 23

Figure 13 Operation cycle of the Kalman filter algorithm
illustrating ‘predict and correct’ behaviour. . . 24

Figure 14 Operation cycle of the extended Kalman filter
algorithm illustrating ‘predict and correct’ be-
haviour. . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 15 Placement of the GaitWatch components at the
body, from [39]. . . . . . . . . . . . . . . . . . . 28

vii



List of Figures viii

Figure 16 Pitch angle of the right shank with respect to
the x-axis, obtained by the projection of the
gravity vector and by integrating the angular
rate, in comparison to the reference. . . . . . . 30

Figure 17 Pitch angle of the right shank with respect to
the x-axis, obtained by the projection of the
gravity vector and by sensor fusion of acceler-
ometer and gyroscope data in a classical Kal-
man filter, in comparison to the reference. . . . 30

Figure 18 Human leg with optical markers, from [1]. . . 31
Figure 19 Kinematic model of the human leg, from [7]. . 32
Figure 20 Entire computation steps of the recursive filter

algorithm. . . . . . . . . . . . . . . . . . . . . . 40
Figure 21 Pitch angle of the right thigh with respect to

the x-axis, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering, in comparison to the
reference. Walking speed: 2 km/h. . . . . . . . . 45

Figure 22 Pitch angle of the right shank with respect to
the x-axis, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering, in comparison to the
reference. Walking speed: 2 km/h. . . . . . . . . 45

Figure 23 Root-mean-square error comparison of angle
estimation, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering. Walking speed: 2 km/h. 46

Figure 24 Accelerometer-based shank angle with respect
to the x-axis with and without correction of ac-
celeration signal. Walking speed: 2 km/h. . . . . 46

Figure 25 Pitch angle of the right thigh with respect to
the x-axis, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering, in comparison to the
reference. Walking speed: 4 km/h. . . . . . . . . 47

Figure 26 Pitch angle of the right shank with respect to
the x-axis, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering, in comparison to the
reference. Walking speed: 4 km/h. . . . . . . . . 47

Figure 27 Root-mean-square error comparison of angle
estimation, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering. Walking speed: 4 km/h. 48



Figure 28 Accelerometer-based shank angle with respect
to the x-axis with and without correction of ac-
celeration signal. Walking speed: 4 km/h. . . . . 48

Figure 29 Pitch angle of the right thigh with respect to
the x-axis, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering, in comparison to the
reference. Walking speed: 6 km/h. . . . . . . . . 49

Figure 30 Pitch angle of the right shank with respect to
the x-axis, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering, in comparison to the
reference. Walking speed: 6 km/h. . . . . . . . . 49

Figure 31 Root-mean-square error comparison of angle
estimation, obtained by projection of the grav-
ity vector, classical Kalman filtering, and ex-
tended Kalman filtering. Walking speed: 6 km/h. 50

Figure 32 Accelerometer-based shank angle with respect
to the x-axis with and without correction of ac-
celeration signal. Walking speed: 6 km/h. . . . . 50

L I S T O F TA B L E S

Table 1 Filter parameters. . . . . . . . . . . . . . . . . . 42
Table 2 Root-mean-square errors of the Kalman filter

and the extended Kalman filter. . . . . . . . . . 44

L I S T I N G S

Listing 1 Matlab® code file ‘fusion_EKF.m’ . . . . . . . 55
Listing 2 Matlab® code file ‘optimise_EKF.m’ . . . . . . 61
Listing 3 Matlab® code file ‘eofEKF.m’ . . . . . . . . . . 63
Listing 4 Matlab® code file ‘EKF_experiments_1.m’ . . 64

ix



A C R O N Y M S

ARW Angle random walk

CITIC Research Centre for Information and Communications
Technologies

CITIC University of Granada

EKF Extended Kalman filter

IMU Inertial measurement unit

LTSD Long term spectral detector

MARG Magnetic, angular rate, and gravity

MEMS Microelectromechanical systems

MIMU Magnetic inertial measurement unit

NED North-east-down

RMSE Root-mean-square error

N O TAT I O N

a Amplitude of an oscillating mode

a Acceleration vector, a ∈ R3

B Control matrix that relates the control input to the
state x

Cbw Transformation matrix transforming a position vec-
tor from the body frame to the world frame

Cwb Transformation matrix transforming a position vec-
tor from the world frame to the body frame

d Desired filter response of a linear discrete-time filter

D Damping coefficient

x



NOTATION xi

e Error signal of a linear discrete-time filter

E Orthonormal basis {x,y, z} ∈ R3

f Force vector, f ∈ R3

F One-dimensional force

g Gravity vector

‖g‖ Magnitude of the gravity vector

h0,h1,h2, . . . Impulse response of a linear discrete-time filter

h Functional denoting the non-linear measurement
matrix function of a discrete dynamical system

H Measurement sensitivity matrix defining the linear
relationship between the state of the dynamical sys-
tem and the measurements that can be made

H[1] Linear approximation of the measurement sensitiv-
ity matrix

In Identity matrix In ∈ Rn×n

k Discrete time normalised to sampling interval, that
is sample number, k ∈N0

kx Spring constant along the x-axis

K Weighting factor

K Kalman gain matrix

m Mass

µ Mean value of a conditional probability density

n Fixed discrete time, non-dimensional number, or
number of iterations applied to recursive algorithms

ω Scalar angular velocity

ω Angular velocity, ω ∈ R3

Ω Resonance frequency

ΩE→E ′ Function that transforms a position vector p in the
vector space E into the vector p ′ in the vector space
E ′

p Position vector in a three-dimensional vector space

P Covariance matrix of state estimation uncertainty

φ Roll angle that determines the rotation around the
x-axis



NOTATION xii

φ Functional denoting the non-linear transition matrix
function of a discrete dynamical system

Φ State transition matrix of a discrete linear dynamical
system

Φ[1] Linear approximation of the state transition matrix
of a discrete linear dynamical system

ψ Yaw angle that determines the rotation around the
z-axis

Q Covariance matrix of process noise in the system
state dynamics

R Covariance matrix of measurement noise

σ Standard deviation of a random variable

σ2 Variance of a random variable

t Continuous time

T Transformation matrix

θ Pitch angle that determines the rotation around the
y-axis

u Scalar nominal velocity

v Measurement noise vector, v ∈ Rm; or mass velocity,
v ∈ R3

w Scalar noise term

w Process noise vector

w ∼ N(µ,σ2) The random variablew is distributed normally with
mean µ and variance σ2

x One-dimensional location

x̂ Estimate of x

∆x One-dimensional displacement in x-direction

x,y, z Axes of the fixed world frame

X, Y,Z Axes of the moving body frame

x State vector of a linear dynamical system

xk The kth element of a sequence . . . , xk−1, xk,
xk+1, . . . of vectors

x̂ Estimate of the state vector of a linear dynamical
system



NOTATION xiii

x̂−k A priori estimate of x̂, conditioned on all prior meas-
urements except the one at time tk

z(0), z(1), z(2), . . . Time series that serves as input to a linear discrete-
time filter

z−1 Unit-delay

z Observation or measurement vector of a dynamical
system
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1
I N T R O D U C T I O N

Monitoring and assessment of human body motion, in particular the
analysis of gait, has become an integral part of medical diagnosis,
therapy techniques, and rehabilitation [1]. Gait analysis involves the
measurement and assessment of quantitative parameters that charac-
terise human locomotion. First research in this field was conducted
in the late 19th century [1]. The quantitative data enable physicians
to diagnose a variety of medical conditions, validate treatment suc-
cess, set goals in rehabilitation and regularly alter them when ne-
cessary. However, standard gait analysis based on multi-camera mo-
tion capture systems and force measuring platforms require special-
ised gait laboratories, expensive equipment, and lengthy setup times.
Moreover, the assessments of gait based on measurements performed
in clinical settings might not be truly representative [2].

Unobtrusive wearable sensors mitigate the aforementioned limita-
tions. The progressive miniaturisation of inertial and magnetic field
sensors has made them more acceptable to patients and has con-
sequently led to an increasingly pervasive adoption for medical ap-
plications [3]. Low cost sensors have been successfully employed
in clinical and home environments to constantly monitor the move-
ments of patients [4]. Additionally, wearable inertial and magnetic
sensors are used to capture gait kinematics, among others. Kinemat-
ics is a branch of classical mechanics, which is concerned with the
motion of objects without reference to the forces causing the motion.
The position, i. e. the orientation, the velocity, and the acceleration
of a body are of particular interest in kinematics. All three can be
estimated from inertial data.

The orientation of the legs is essential in gait analysis. For the
application in health care accurate orientation estimates are crucial.
A high degree of precision based on data from miniaturised sensors
necessitates adequate signal processing, in order to mitigate the influ-
ence of disruptive factors, such as bias instability and noise, among
others. The signal processing of inertial and magnetic data encom-
passes calibration, adaptive filtering, and sensor fusion. The latter
two were carried out in an extended Kalman filter in the course of
this thesis.

1.1 motivation

Gait analysis provides a powerful means to derive diagnostic inform-
ation about the functioning of the musculoskeletal, vestibular, and

1



1.2 goals 2

central and peripheral nervous system [5]. Accurate orientation es-
timation of the extremities by means of wearable inertial and mag-
netic field sensors allows objective assessment of human gait without
the aforementioned constraints of camera-based motion capture sys-
tems. A more reliable and more precise orientation estimation would
enable an even more informative gait analysis. Therefore, a multitude
of applications in the medical field would profit from a more accurate
orientation estimation [6]. The direct relation to health care and the
resulting possibility to improve the quality of life of many patients
was the motivation for this thesis.

1.2 goals

A system for human body motion analysis based on wearable sensors
had been developed earlier, in order to gather and process movement
data of patients. A detailed description of the so-called GaitWatch sys-
tem is found in Section 4.1. The goal of this thesis was implementing
a new Kalman filter based orientation algorithm proposed by Ben-
nett, Jafari and Gans in [7], in order to improve the estimation of the
orientation angles of the human leg. After the adaptation of the pro-
posed mathematical model of the leg and the extended Kalman filter
to the existing system, the algorithm should be implemented using
the numerical computing environment Matlab®. Subsequently, the
results should be validated against existing algorithms by comparing
their respective root-mean-square error. Other than in [7], the filter
algorithms should be applied to data of real patients for testing.

1.3 methodology

This document presents my work within the overall project in a chro-
nological order. Subsequent to the previous introductory overview
of the topic and the definition of the project objectives, this chapter
ends with a description of the state of the art. To accomplish the tasks
defined in the previous section, I had to acquire knowledge regarding
various subjects. Chapters 2 and 3 outline the necessary fundament-
als of MARG sensors and orientation estimation, and digital filters,
respectively. This enables comprehension of the overall project, even
for readers that are not familiar with some of the subjects. Those
readers are referred to Chapters 2 and 3 at this point, before reading
the state of the art. The actual implementation of the Kalman filter, in-
cluding a prior theoretical design is given in Chapter 4. This chapter
also encompasses the experimental setup, the results and a discussion
of the latter. Finally, Chapter 5 covers conclusions and future work.

As additional means to communicate with my supervisor and in
order to enable him to follow the progress of my work at any time
we used Pivotal Tracker, a tool for agile project management, and
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GitHub, a repository hosting service based on the distributed version
control system Git. This thesis was written in LATEX.

1.4 state of the art

There are several research works in the literature dealing with ori-
entation estimation by means of inertial sensors. Kalman filters have
been used successfully to improve the estimation of orientation angles
from inertial data. The state of the art at the commencement of the
project is described below. Subsequently, applications of wearable
inertial sensors in health care are presented.

1.4.1 Kalman Filtering Applied to Orientation Estimation

Considering the fact that inertial and magnetic field sensors are used
to establish objective body motion parameters that affect medical dia-
gnosis, therapy, and rehabilitation, the necessity of high levels of ac-
curacy becomes obvious. In order to obtain precise orientation estim-
ates from sensor data, it is essential to alleviate the effects of meas-
urement noise and to combine the advantages of different sensors
through sensor fusion. Therefore, a wide variety of Kalman filter al-
gorithms have been developed in the past few years. It is common
practice to fuse accelerometer and gyroscope measurements to mitig-
ate their respective drawbacks and thus obtain more accurate angle
estimates.

Luinge, Veltink and Baten [8] alleged that the gravitational com-
ponent of the acceleration signal has a greater magnitude than the
component caused by motion for many human movements. They
estimated the tilt angle, which is defined as the angle between the
sensor axes and the vertical. The separate estimates from an accel-
erometer and a gyroscope were fused with a Kalman filter. To test
their method they moved the sensors around by hand for 30 seconds
and then put them in a known position. The orientation obtained by
integrating the angular rate served as an additional reference. They
concluded that a fusion of accelerometer and gyroscope signals ac-
counts for a considerable improvement of the orientation estimation.
This approach lacks dynamical comparison, since it only compares
the errors at specific static positions.

Due to human motion intensity usually being subject to change,
Olivares Vicente implemented a gated Kalman filter in [9]. They mod-
elled linear acceleration during intense motion as noise and improved
the performance of the Kalman filter by dynamically adjusting the
variance of both the process and measurement noise, according to
the motion intensity. For that purpose, they applied a LTSD and set
the variance between two predefined values. Then, the gated Kalman
filter fused the information from the accelerometer and the gyroscope
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signals. With this method they improved the adapting capability of
the filter and consequently the precision of the orientation estimation.

Bennett, Jafari and Gans demonstrated in [7] that accelerometer
angle estimates are inaccurate for typical motions of the leg. They
affirmed the need to decouple the acceleration due to motion from
the acceleration due to gravity, since the former cannot be neglected
during fast motions. Therefore, they deployed a kinematic model of
the leg to determine the acceleration that occurs due to motion and
corrected the acceleration signal accordingly. An extended Kalman
filter fused the corrected acceleration signal with measurements of a
gyroscope. They tested the filter algorithm by moving a mechanical
two link pendulum by hand. Their method improved upon the raw
acceleration method during motion and at rest by an 83% smaller
root-mean-square error. Their proposed approach is the foundation
of the filter algorithm implemented in Section 4.2.

1.4.2 Wearable Sensors in Health Care

Inertial sensors can be found in smart phones, fitness trackers, and
other wearable devices, among others. With increasing capability of
body sensor networks and wearable computing, they have become
prevalent in research environments for estimation and tracking of
human body motion [7]. They are used in activity monitoring [10–
12], rehabilitation [13, 14], sports training [12, 15], and localisation
[16, 17]. Also, emergency falls of elderly people were detected by
means of inertial sensors [18–20].

Many neurodegenerative diseases, such as Parkinson’s disease, im-
pair stable stance and gait, and reduce the patient’s mobility. Thus,
they diminish the quality of life significantly. Parkinson’s disease is
a movement disorder that is characterised by marked slow move-
ments, tremors, and unstable posture. Especially in advanced stages
of the disease many patients exhibit an episodic, brief inability to step,
which delays gait initiation or interrupts ongoing gait. In fact, one of
the most reliable diagnostic criterion of the disease is gait [1]. Hence,
wearable motion sensors have been used successfully to objectively
classify the severity of the disease [21–23].

Stroke patients, who regained their walking ability, need to un-
dergo rehabilitation to recover their independent mobility. Ambu-
latory gait analysis provides a means to assess the function of the
lower extremities of hemiparetic post-stroke patients and follow the
progress of rehabilitation [1, 24]. In addition, the presence of neurolo-
gic gait abnormalities is used as a significant predictor of the risk of
developing dementia [25].



2
O R I E N TAT I O N E S T I M AT I O N U S I N G M A R G
S E N S O R S

This chapter covers the working principals of MARG sensors, as well
as the fundamentals of orientation estimation, that are necessary for
the implementation of the aforementioned system. Subsequently, a
mathematical construct used to express orientation – Euler angles –
is explained. Towards the end of the chapter, different approaches
to compute orientation estimates from magnetic and inertial data in-
cluding their pros and cons are described. Finally, sensor fusion as a
means to mitigate the drawbacks of each approach is introduced.

2.1 marg sensors

MARG sensors is a collective term for magnetic, angular rate, and
gravitational sensors, which encompasses inertial sensors, as well as
magnetic field sensors, also referred to as magnetometers. Inertial
sensors itself generally fall into two categories: instruments sensing
linear inertial displacement, i. e. accelerometers, and rotational in-
ertial rate sensors, that is gyroscopes. They are applied in various
contexts to quantify vibration, motion, and shock [26]. Particularly,
the development of MEMS opened up many medical applications as
stated in Section 1.4.2. MEMS sensors have low manufacturing costs,
small physical size, and low power consumption [26]. This section
compiles the functional principles of different MARG sensors and in-
troduces IMU as a combination of those.

2.1.1 Accelerometers

Accelerometers measure the acceleration of an object relative to an
inertial frame. Since acceleration cannot be sensed directly, the force
exerted on a reference mass is measured. The resultant acceleration
is computed according to Newton’s second law f = m · a, where
f ∈ R3 denotes the force vector, m the mass, and a ∈ R3 the ac-
celeration vector. Usually, a single axis accelerometer consists of a
small proof mass connected via a spring to the case of the instrument.
The proof mass is displaced by ∆x with respect to the case, when
the instrument experiences a certain acceleration along its sensitive
axis. Disregarding drag force, according to Hooke’s law f = −k ·∆x,
the displacement is directly proportional to the force exerted by the
mass and thus to the acceleration. Therefore, by measuring the dis-
placement of the proof mass the acceleration can be obtained. Figure

5



2.1 marg sensors 6

(a) (b) (c)

0 0 0∆x

∆x

g

Proof
mass

Sensitive
axis

a

[ Thursday 22nd December, 2016 at 18:36 – classicthesis Version 2.0 ]

Figure 1: A mass-and-spring accelerometer under different conditions: (a)
at rest or in uniform motion, (b) accelerating, and (c) at rest, being
exposed to the gravity g, from [26].

1 shows the displacement ∆x of the mass with respect to the case
of the instrument for three different conditions: (a) at rest or in uni-
form motion, (b) accelerating, and (c) at rest, being exposed to the
gravity g. According to how the mass displacement is sensed, accel-
erometers can be classified as resistive, capacitive, and piezoelectric.
Besides, there are surface acoustic wave, fibre optic, vibrating beam
and solid-state MEMS accelerometers. To obtain a three-dimensional
accelerometer, three single-axis accelerometers are mounted together.
Nowadays, most accelerometers are manufactured using MEMS tech-
nology, which was developed for the military and aerospace markets
in the 1970s [26].

2.1.2 Gyroscopes

Gyroscopes are used for measuring and maintaining angular orient-
ation. In essence, based on two different physical principles, namely
the Sagnac and Coriolis effect, gyroscopes sense angular velocity,
which is why they are also referred to as angular velocity sensors or
angular rate sensors. By integrating the angular velocity the rotation
angle can be obtained. Here we will only elaborate on the working
principle of vibrating gyroscopes, since they are utilised in the Gait-
Watch system. Armenise et al. give a comprehensive overview of
current gyroscope technologies in [27].

Coriolis vibratory gyroscopes, or vibrating gyros for short, sense
angular velocity based on the effect of Coriolis force on a vibrating
mass. The Coriolis force is a fictitious force experienced by a mass m
moving in a rotating reference frame. It can be calculated as: fC =

−2m(ω× v), where v is the mass velocity in the rotating reference
frame andω is the angular velocity of the reference frame. As seen in
this equation the Coriolis force is only present when the mass varies
its distance with respect to the spin axis. Otherwise, if ω and v are
parallel, the cross product becomes zero. The two degree-of-freedom
spring-mass-damper system shown in Figure 2 serves as a simple
model of a vibrating angular rate sensor. The mass m can move
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Figure 2: A simple model of a Coriolis vibratory gyroscope: A two degree-
of-freedom spring-mass-damper system in a rotating reference
frame, from [27].

along the x and y-axis, respectively. The angular velocity around the
z-axis is denoted with ω. The drive or primary oscillating mode, that
is, the oscillation along x, is excited by the force Fx directed along the
x-axis. The oscillation along y, called sense or secondary oscillating
mode, is due to system rotation around the z-axis. Dx and Dy are the
damping coefficients and kx and ky are the spring constants along
the x and y-axis, respectively. Typically, the primary oscillating mode
is excited by a sinusoidal force with an angular frequency close to
the resonance frequency, so that Ωx ∼=

√
kx/m. Its amplitude is kept

constant at ax. As shown in [27], the amplitude of the sense mode is
then given by

ay = −
2axΩxω√

(Ω2x −Ω
2
y)
2 +Ω2xΩ

2
y/Q

2
y

, (1)

where Ωy =
√
ky/m is the resonance frequency of the secondary

resonator and Qy =
√
mky/Dy its quality factor. The amplitude

ay is directly proportional to the angular rate of the two degree-of-
freedom spring-mass-damper system. Thus, ω can be estimated by
measuring the amplitude of the oscillation along the y-axis.

Usually, vibrating gyroscopes are manufactured using MEMS tech-
nology. MEMS gyros are of low to medium accuracy [26], but due to
their size they are ideally suited for medical applications.

2.1.3 Magnetometers

Magnetometers measure the strength and the direction of the mag-
netic field at a point in space. There are numerous techniques used to
produce magnetic field sensors, which exploit a broad range of phys-
ical phenomena [28]. Lenz and Edelstein give a complete survey of
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common technologies used for magnetic field sensing in [28]. Many
MEMS magnetometers sense mechanical motion of a MEMS struc-
ture due to Lorentz force and estimate the strength of the magnetic
field according to the displacement. When an external magnetic field
interacts with a current-carrying silicon MEMS structure the Lorentz
force causes a displacement of this structure. Piezoresistive, capacit-
ive, or optical sensing can be used to detect the displacement of the
MEMS structure. MEMS Lorentz force magnetometers are free from
hysteresis, require no specialised materials and can be monolithically
integrated with other MEMS inertial sensors [29].

2.2 inertial measurement units

Devices using a combination of accelerometers and gyroscopes to
measure the orientation of a rigid body with up to six degrees of free-
dom are referred to as IMU. If they include additional magnetometers
they are termed MIMU. The number of degrees of freedom states the
number of independent motions, with respect to a reference frame
that are allowed to the body in space. MIMU are portable and relat-
ively inexpensive. They can be easily attached to the body and thus
allow non-clinical longterm application. Their drawbacks are com-
plex calibration procedures and drift behaviour over time, depending
on intensity and duration of the measurement interval. Hence, in
order to maintain a satisfactory degree of precision, periodical recom-
putation of the calibration parameters is required [9].

2.3 euler angles

As well as in aircraft navigation, in the motion monitoring field the
position of the coordinate frame of the body, that is the body frame,
with respect to a reference coordinate frame, termed the world frame,
is known as attitude, which is used as a synonym of orientation. Euler
angles are one of several mathematical ways to describe the attitude
of an object in three-dimensional Euclidean space. They represent a
sequence of three elemental rotations about the axes of the coordinate
system, defined as follows:

• The roll angle φ determines the rotation around the x-axis.

• The pitch angle θ determines the rotation around the y-axis.

• The yaw angle ψ determines the rotation around the z-axis.

Figure 3 depicts the rotation about the axes z,y ′,X by ψ, θ,φ, respect-
ively, according to the Tait-Bryan convention. The colour blue indic-
ates the world frame {x,y, z}, which matched the body frame {X, Y,Z}
before the rotations. The colour red indicates the orientation of the
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Figure 3: Representation of the body frame, depicted in red, with respect to
the world frame, depicted in blue, from [30]. The body frame was
rotated, by the Euler angles ψ, θ,φ about the axes z,y ′,X, respect-
ively.

body frame after the rotations were carried out. In contrast to extrinsic
rotations, where each of the three elemental rotations may occur about
the axes of the original coordinate system, the Tait-Bryan rotations are
intrinsic rotations that occur about the axes of the rotating coordinate
system, which changes its orientation after each rotation.

Euler angles are a simple and intuitive means to represent rotations
in three-dimensional space. However, for the above mentioned para-
meterisation they have singularities at values of θ = nπ, n ∈ Z. At
these points a rotation about the x-axis and the z-axis constitute the
same motion, which results in the loss of one degree of freedom and
makes changes in φ and ψ indistinguishable. This phenomenon is
called gimbal lock.

2.3.1 Transformation Matrix

Coordinates representing a point in one coordinate system can be
transformed to another. Such a transformation can be expressed as
a multiplication of a matrix with the coordinate vector that is to be
transformed. Let E denote the orthonormal basis {x,y, z} ∈ R3 and let
E ′ denote the orthonormal basis {X, Y,Z} ∈ R3. Furthermore, let p de-
note the position vector of an arbitrary point in three-dimensional Eu-
clidean space. The coordinate transformation from E to E ′ is denoted
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ΩE→E ′ : (p1,p2,p3) 7→ (p ′1,p ′2,p ′3). Then, the linear transformation
from p to p ′ is given by

p ′ =ΩE→E ′(p) = Tp , (2)

where T is the transformation matrix, which is a function of the rotation
angles between the two coordinate systems.

In order to transform the coordinate vector from the world frame to
the body frame, according to the common aerospace rotation sequence
mentioned above and the NED coordinate system, the transformation
matrix Cwb is given by

Cwb = Tx(φ)Ty(θ)Tz(ψ)

=

[
1 0 0
0 cosφ sinφ
0 − sinφ cosφ

][
cosθ 0 − sinθ
0 1 0

sinθ 0 cosθ

][
cosψ sinψ 0
− sinψ cosψ 0
0 0 1

]

=

[
cosθ cosψ cosθ sinψ − sinθ

sinφ sinθ cosψ−cosφ sinψ sinφ sinθ sinψ+cosφ cosψ sinφ cosθ
cosφ sinθ cosψ+sinφ sinψ cosφ sinθ sinψ−sinφ cosψ cosφ cosθ

]

(3)

Plugged in Equation 2 (T = Cwb), the pre-multiplications of the
matrices Tx(φ), Ty(θ), Tz(ψ) to the vector p represent the coordinate
rotations about the single axes x,y ′,Z, according to the right hand
rule, respectively. That is, the function ΩE→E ′ maps the vector p to
its orthogonal projection onto the axes of the coordinate system, p ′,
which result from the respective two-dimensional rotation of φ, θ,ψ
about the axes x,y ′,Z. This is illustrated for a single rotation around
the z-axis by the angle ψ in Figure 4. Note that {x ′,y ′, z ′} denotes
the coordinate frame after the first elemental rotation. The matrices
Tx(φ), Ty(θ), and Tz(ψ) are also known as direction cosine matrices,
since their elements are the cosines of the unsigned angles between
the body-fixed axes and the axes of the world frame, as shown in
[31]. The form stated here is already simplified. The matrix Cbw
that transforms a coordinate vector from the body frame to the world
frame is given by

Cbw =

[
cosθ cosψ sinφ sinθ cosψ−cosφ sinψ cosφ sinθ cosψ+sinφ sinψ
cosθ sinψ sinφ sinθ sinψ+cosφ cosψ cosφ sinθ sinψ−sinφ cosψ
− sinθ sinφ cosθ cosφ cosθ

]

(4)
Note that Cbw = CTwb = C−1

wb. Thus, Cbw and Cwb are orthogonal
matrices so that CbwCwb = I3, where I3 ∈ R3×3 is the identity
matrix.

2.4 projection of the gravity vector

As described in Section 2.1.1, accelerometers measure the linear accel-
eration they experience. Under static or quasi-static conditions, that
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Figure 4: An exemplary coordinate rotation about the z-axis by an angle
ψ, illustrating the orthogonal projection on the resulting axes
x ′,y ′, z ′.

is, the sensor is in uniform motion, or at low acceleration, it can be
assumed that the measured acceleration is mainly that of gravity. By
means of simple trigonometric functions estimates for the pitch and
the roll angle can be obtained. Since the gravity vector is perpen-
dicular to the xy-plane, and thus a rotation around the z-axis will
not cause any variation in the sensed acceleration, the yaw angle
cannot be obtained by this method. To solve this problem a three-
dimensional magnetometer is used, which measures the variation of
Earth’s magnetic field while rotating around the z-axis.

When the accelerometer is motionless, its measurements will be
directly related to the angle of the sensor relative to gravity, as depic-
ted in Figure 5 (a). In that case θ with respect to the vertical is given
by

θ = atan2(Az,Ax) , (5)

where Ax and Az are the components of the acceleration vector in x
and z-direction, respectively. However, when the sensor is in motion,
in addition to the gravity, there are radial and tangential acceleration
components due to motion, as depicted in Figure 5 (b). The mag-
nitude of the gravity vector g is denoted with ‖g‖. Ignoring these
components will cause incorrect angle estimates.

2.5 integration of the angular rate

Another way to estimate the attitude of an object is the integration
of the angular rate around the x,y and z-axis, respectively. Although
this would theoretically lead to very accurate orientation estimates,
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Figure 5: Acceleration seen by the sensor (b) with and (a) without motion,
from [7].

they are impaired by ARW and dynamical bias in practice. ARW is an
effect caused by the integration of high-frequency, thermo-mechanical
noise, which leads to a random additive angle in the orientation sig-
nal. An even greater impact than AWR has the gyroscope’s dynamic
bias, which has its origin in low-frequency flicker noise. Both effects
cause a dramatical drift in the angle signal over time.

2.6 sensor fusion

Since the projection of the gravity vector is only valid under static
or quasi-static conditions, or at low acceleration, and the integration
of the angular rate leads to non-reliable estimates due to ARW and
dynamic bias, but is not affected by the intensity of motion, a means
to combine the information of both sensors is desirable. The com-
bination of information from multiple sensors to increase the overall
precision of the estimation of a certain quantity of interest is termed
sensor fusion. Raol [32] states the following advantages of sensor fu-
sion:

• Robust functional and operational performance is given, in case
of data loss from one sensor, due to redundancy provided by
multiple sensors.

• Enhanced confidence in the results inferred from the measure-
ment of one sensor, if they are confirmed by the measurement
of another sensor.

• With sensor fusion an arbitrary fine time resolution of measure-
ments is possible, whereas single sensors need a finite time to
transmit measurements and so limit the frequency of measure-
ments.
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• One sensor might be, to some extent, better in a certain state
of the measured process, e. g. low or high motion intensity in
attitude estimation, and thus, by fusing multiple sensor signals,
a satisfactory accuracy among all states of the process could be
attained.

Sensor fusion can be realised by the use of a Kalman filter. This
specific digital filter is described in detail in the next chapter, and
applied in Chapter 4 to fuse the sensor signals of accelerometers and
gyroscopes.



3
D I G I TA L F I LT E R S

Conceived in general terms, a filter is a physical device for removing
unwanted components of a mixture. In the technical field, a filter is
a system designed to extract information from noisy measurements
of a process. That is, the filter delivers an estimate of the variables
of principal interest, which is why it may also be called an estimator.
Filter theory is applied in diverse fields of science and technology,
such as communications, radar, sonar, navigation, and biomedical
engineering [33].

In contrast to analogue filters that consist of electronic circuits to at-
tenuate unwanted frequencies in continuous-time signals and thus
extract the useful signal, a digital filter is a set of mathematical oper-
ations applied to a discrete-time signal in order to extract informa-
tion about the hidden quantity of interest. A discrete-time signal is a
sequence of samples at equidistant time instants that represent the
continuous-time signal with no loss, provided the sampling theorem
is satisfied, according to which the sample frequency has to be greater
than twice the highest frequency component of the continuous-time
signal.

Digital filters can be classified as linear and non-linear. If the quant-
ity at the output of the filter is a linear function of its input, that is, the
filter function satisfies the superposition principle, the filter is said to
be linear. Otherwise, the filter is non-linear.

3.1 the filtering problem

Consider, as an example involving filter theory, the continuous-time
dynamical system depicted in Figure 6. The desired state vector of
the system, x(t), is usually hidden and can only be observed by indir-
ect measurements z(t) that are a function of x(t) and subject to noise.
Equally, the equation describing the evolution of the state x(t) is usu-
ally subject to system errors. These could be caused by, for instance,
effects not accounted for in the model. The dynamical system may
be an aircraft in flight, in which case the elements of the state vector
are constituted by its position and velocity. The measuring system
may be a tracking radar producing the observation vector z(t) over
an interval [0, T ]. The requirement of the filter is to deliver a reliable
estimate x̂(t) of the actual state, by taking the measurement as well as
a prior information into account.

14
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Figure 6: Block diagram depicting the components involved in state estima-
tion, from [33].

3.2 the wiener filter

A statistical criterion, according to which the performance of a fil-
ter can be measured, is the mean-squared error. Consider the linear
discrete-time filter with the impulse response h0,h1,h2, . . . depicted
in Figure 7. At some discrete time k it produces an output designated
by x̂(k), which provides an estimate of a desired response denoted by
d(k). According to Haykin [33], the essence of the filtering problem
and the resulting requirement is summarised with the following state-
ment:

“Design a linear discrete-time filter whose output x̂(k)
provides an estimate of the desired response d(k), given
a set of input samples z(0), z(1), z(2), . . . , such that the
mean-square value of the estimation error e(k), defined
as the difference between the desired response d(k) and
the actual response x̂(k), is minimized.”

Assume a stationary stochastic process with known statistical para-
meters as the mean and correlation functions of the useful signal and
the unwanted additive noise. Then, the solution to this statistical op-
timisation problem is commonly known as the Wiener filter. Yet, since
the Wiener filter requires a priori information about the statistics of
the data to be processed, it may not be optimum for non-stationary
processes. For such an environment, in which the statistics are time-
varying, it needs a filter that constantly adapts its parameters to op-
timise its output.

3.3 adaptive filters

A possible approach to reduce the limitations associated with the
Wiener filter for non-stationary processes is the ‘estimate and plug’
procedure. The filter ‘estimates’ the statistical parameters of the relev-
ant signals and ‘plugs’ them into a non-recursive formula for comput-
ing the filter parameters. This procedure requires excessively elabor-
ate and costly hardware for real-time operation [33]. To overcome this
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Figure 7: Block diagram representation of the statistical filtering problem,
from [33].

disadvantage one may use an adaptive filter, which is a self-designing
system that relies, in contrast, on a recursive algorithm. This allows
the filter to perform satisfactorily, even if there is no complete know-
ledge of the relevant signal characteristics. Provided the variations
in the statistics of the input data are sufficiently slow, the algorithm
can track time variations and is thus suitable for non-stationary en-
vironments. The algorithm starts from some predetermined set of
initial conditions respecting the knowledge about the system. In a
stationary environment it converges to the optimum Wiener solution
in some statistical sense after successive iterations. The Kalman filter
is one such adaptive filter.

Due to the fact that the parameters of an adaptive filter are up-
dated each iteration, they become data dependent. The system does
not obey the principles of superposition, which therefore makes the
adaptive filter in reality a non-linear system. However, an adaptive
filter is commonly said to be linear if its input-output map satisfies
the superposition principle, as long as its parameters are held fixed.
Otherwise it is said to be non-linear.

3.4 the kalman filter

The Kalman filter is a set of recursive mathematical equations that
provide an efficient means to estimate the state of a linear dynamic
system, perturbed by additive white Gaussian noise, even when the
precise nature of the modelled system is unknown. It incorporates
knowledge of the system and measurement device dynamics, the stat-
istical description of the system errors and measurement noise, and
available information about initial conditions of the variables of in-
terest, in order to produce an estimate of these variables, in a way
that the mean of the squared error is minimised [34].

The filter is named after Rudolf E. Kalman, who 1960 published
his famous paper describing a recursive solution to the discrete-data
linear filtering problem [35]. Since that time, the Kalman filter has
been the subject of extensive research, due to a large extent to the



3.4 the kalman filter 17

x

fx(t1)|z(t1)(x|z1)

z1

σz1

[ Thursday 22nd December, 2016 at 18:37 – classicthesis Version 2.0 ]

Figure 8: Conditional probability density of the position based on measure-
ment value z1, from [34].

advances in digital computing [36]. It finds applications in radar
tracking, navigation, and orientation estimation, among others. Za-
rchan and Musoff [37] stated: “With the possible exception of the fast
Fourier transform, Kalman filtering is probably the most important
algorithmic technique ever devised.”

3.4.1 An Introductory Example

The following introductory example from Maybeck [34] is an illustrat-
ive description of the determination of a one-dimensional position to
understand how the Kalman filter works. Suppose you are lost at
sea during the night and take a star sighting to determine your ap-
proximate position at time t1 to be z1. Your location estimate is, due
to inherent measurement device inaccuracies and human error, some-
what uncertain, and thus assumed to be associated with a standard
deviation σz1 . The conditional probability of x(t1), your actual posi-
tion at time t1, conditioned on the observed value z1, is depicted in
Figure 8. The best estimate of your position, based on this conditional
probability density, is

x̂(t1) = z1 , (6)

and the variance of the error in the estimate is

σ2x(t1) = σ
2
z1

. (7)

Right after you, say a trained navigator friend takes an independent
fix at time t2 ∼= t1, so that the true position has not changed at all.
He obtains a measurement z2 with a variance σ2z2 , which is somewhat
smaller than yours, since he has a higher skill. Figure 9 depicts the
conditional probability density of your position at time t2, based only
on the measurement value z2. Combining these data, your position at
time t2 ∼= t1, x(t2), given both z1 and z2, is then a Gaussian density
with mean µ and variance σ2, as indicated in Figure 10, with
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Figure 9: Conditional probability density of the position based on measure-
ment value z2 alone, from [34].
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Figure 10: Conditional probability density of the position based on data z1
and z2, from [34].
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µ = z1
σ2z2

σ2z1 + σ
2
z2

+ z2
σ2z1

σ2z1 + σ
2
z2

(8)

and

1

σ2
=

1

σ2z1
+

1

σ2z2
. (9)

The uncertainty in your estimate of position has been decreased be-
cause σ is less than either σ2z1 or σ2z2 . Even if σz1 was very large,
the variance of the estimate is less than σz2 , which means that even
poor quality data increases the precision of the filter output. The best
estimate, given this density, is

x̂(t2) = µ , (10)

with an associated error variance σ2.
Having a closer look at the form of µ in Equation 8, one notices that

it makes good sense. If the measurements were of equal precision,
meaning σz1 = σz2 , the optimal estimate is simply the average of
both measurements, as would be expected. If σz1 is larger than σz2 ,
the equation weights z2 more heavily than z1.

Equation 10 for the filter output can be written as

x̂(t2) = z1
σ2z2

σ2z1 + σ
2
z2

+ z2
σ2z1

σ2z1 + σ
2
z2

= z1 +
σ2z1

σ2z1 + σ
2
z2

[z2 − z1] ,

(11)

or in a form that is used in Kalman filter implementations, with
x̂(t1) = z1, as

x̂(t2) = x̂(t1) +K(t2)[z2 − x̂(t1)] , (12)

where

K(t2) =
σ2z1

σ2z1 + σ
2
z2

. (13)

These equations represent the ‘predictor-corrector’ structure of the
Kalman filter. A prediction of the value that the desired variables and
the measurements will have at the next measurement time is made,
based on all previous information. Then the difference between the
measurement and its predicted value is used to correct the prediction
of the desired variables. According to Equation 12 the optimal estim-
ate at time t2, that is x̂(t2), is equal to x̂(t1), the best prediction of its
value before z2 is taken, plus a correction term of an optimal weight-
ing value times the difference between z2 and the best prediction of
it before the measurement is actually taken.
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Figure 11: Propagation of conditional probability density, from [34].

To incorporate dynamics into the model, suppose you travel for
some time before taking another measurement. The best model you
have for your motion may be of the form

dx

dt
= u+w , (14)

where u is a nominal velocity and w is a noise term, representing the
uncertainty in your knowledge of the actual velocity due to disturb-
ances and effects not accounted for in the simple first order equation.
It will be modelled as white Gaussian noise with a mean of zero and
variance of σ2w.

The conditional density of the position at time t2, given z1 and
z2, was previously derived. Figure 11 shows graphically how the
density travels along the x-axis as time progresses. It starts at the
best estimate and moves according to the above mentioned model of
dynamics. Due to the constant addition of uncertainty over time it
spreads out. Thus, as the variance increases, you become less sure of
your position. The Gaussian density fx(t3)|z(t1),z(t2)(x|z1, z2) can be
expressed mathematically by its mean and variance given by

x̂−(t3) = x̂(t2) + u[t3 − t2] , (15)

σ2−x (t3) = σ
2
x(t2) + σ

2
w[t3 − t2] , (16)

where the superscript − denotes the prediction of x̂ and σ2x, respect-
ively. Before the measurement is taken at time t3, x̂−(t3) is the op-
timal prediction of the location at t3, associated with the variance
σ2−x (t3) in this prediction.

Now a measurement z3 with an assumed variance σ2z3 is taken.
As before, its conditional probability density is combined with the
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density with mean x̂−(t3) and variance σ2−x (t3), to yield a Gaussian
density with mean

x̂(t3) = x̂
−(t3) +K(t3)[z3 − x̂

−(t3)] (17)

and variance

σ2x(t3) = σ
2−
x (t3) −K(t3)σ

2−
x (t3) , (18)

where the gain K(t3) is given by

K(t3) =
σ2−x (t3)

σ2−x (t3) + σ2z3
. (19)

Observing the form of Equation 19 the reasonableness of the fil-
ter structure becomes obvious. If the variance of the measurement
noise σ2z3 is large, then K(t3) is small, meaning that little confidence
is put in a very noisy measurement and that it is weighted lightly.
For σ2z3 → ∞, K(t3) becomes zero, and x̂(t3) equals x̂−(t3). Thus,
an infinitely noisy measurement is totally ignored. Likewise, if the
dynamical system noise variance σ2w is large, then according to Equa-
tion 16, σ2−x (t3) will be large, and so will be K(t3). Therefore, the
measurement is weighted heavily, in case you are not very certain
about the output of the system model within the filter structure. In
the limit as σ2w → ∞, σ2−x (t3) → ∞, and K(t3) → 1, so Equation 10
yields

x̂(t3) = x̂(t
−
3 ) + 1 · [z3 − x̂(t−3 )] = z3 . (20)

That means that in the limit of absolutely no confidence in the system
model output, solely the new measurement is taken as the optimal
estimate. Finally, if you are absolutely sure of your estimate before z3
becomes available, σ2−x (t3) would become zero, and so would K(t3),
which means that the measurements would be left disregarded.

Extending Equations 15, 16, 17, 18, and 19 to the vector case, and al-
lowing time varying parameters in the system and noise description
leads to the general Kalman filter equations. A complete mathemat-
ical derivation can be found in Haykin [33].

3.4.2 Formulation of the Kalman Filter Equations

Let xk ∈ Rn be the state vector of a discrete-time controlled process
governed by the linear stochastic difference equation

xk =Φk−1xk−1 +Bk−1uk−1 +wk−1 (21)

and zk ∈ Rm the observation or measurement vector of this process,
given by

zk = Hkxk + vk , (22)
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where the index k ∈ N0 denotes discrete time normalised to the
sampling interval. The n × 1 vector wk and the m × 1 vector vk
represent the process noise and the measurement noise, respectively,
modelled as zero-mean, Gaussian white noise

wk ∼ N(0,Qk) , (23)

vk ∼ N(0,Rk) , (24)

with the process noise covariance matrix Qk and the measurement
noise covariance matrix Rk. The n× n state transition matrix Φk−1
in Equation 21 relates the state at the previous time step k − 1 to
the state at the current step k. The n × l matrix Bk−1 relates the
known, optional control input uk−1 ∈ Rl to the state xk. Finally,
the m× n measurement matrix Hk in Equation 22 relates the state
xk to the measurement zk. Both noise processes are assumed to be
uncorrelated. The process noise might not always have a physical
meaning. However, it represents the fact that the model of the real
world is not precise. The process and measurement noise covariance
matrices are related to the respective noise vectors according to

Qk = E[wkwTk ] , (25)

Rk = E[vkvTk ] , (26)

where E denotes the expected value.
The Kalman filter solves the problem of estimating the state xk of

the given linear stochastic system, minimising the weighted mean-
squared error. This problem is called the linear quadratic Gaussian
estimation problem; the dynamic system is linear, the performance
cost function is quadratic, and the random process is Gaussian.

We define the vector x̂−k ∈ Rn as the a priori state estimate repres-
enting knowledge of the process prior to step k and x̂k ∈ Rn as the a
posteriori state estimate at step k given the measurement zk:

x̂−k =Φk−1x̂k−1 +Bk−1uk−1 , (27)

x̂k = x̂−k +Kk[zk −Hkx̂
−
k ] . (28)

The term [zk−Hkx̂
−
k ] is called the measurement innovation or residual.

It reflects the discordance between the predicted measurement Hkx̂−k
and the actual measurement zk. The n×m matrix Kk is termed the
Kalman gain and is given by

Kk = P−
kH

T
k [HkP

−
kH

T
k +Rk]

−1 , (29)

with
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Figure 12: Block diagram depicting the relation between a discrete-time dy-
namical system, its observation, and the Kalman filter.

P−
k =Φk−1Pk−1Φ

T
k−1 +Qk−1 (30)

and

Pk = [In −KkHk]P
−
k . (31)

Figure 12 illustrates the relation of the Kalman filter to the discrete-
time dynamical system with uk = 0, for the sake of simplicity, whereby
z−1 denotes the unit-delay and In the n×n identity matrix.

The Kalman filter equations can be divided into two groups: time
update Equations 27, 30 and measurement update Equations 28 , 29, and
31, as seen in Figure 13, which shows the ‘predict and correct’ beha-
viour of the filter algorithm. After an initialisation of the parameters,
the time update and measurement update steps are repeated recursively
every time step.

3.4.3 The Extended Kalman Filter

Up to this point the Kalman filter has solved the filtering problem for
linear time-dynamical systems. One may extend the Kalman filter to
systems with state dynamics governed by non-linear state transforma-
tions

xk = φk−1(xk−1,uk−1) +wk−1, wk ∼ N(0,Qk) , (32)

and/or a non-linear transformation from state variables to measure-
ment variables

zk = hk(xk) + vk, vk ∼ N(0,Rk) . (33)

The functional φk−1 denotes the non-linear transition matrix function
that may be time varying. It relates the state at the previous time step
k− 1 to the current time step k, depending on the exogenous control
input uk−1. The functional hk denotes a non-linear measurement
matrix function that relates the state xk to the measurement zk and
is possibly time varying, too.
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Initialisation of parameters

P0, x0,H0,Φ0,Q0,R0,

Time update

Compute a priori estimate:
x̂−k =Φk−1x̂k−1 +Bk−1uk−1

Compute a priori error covariance:
P−
k =Φk−1Pk−1Φ

T
k−1 +Qk−1

Measurement update

Compute Kalman gain:
Kk = P−

kH
T
k [HkP

−
kH

T
k +Rk]

−1

Compute a posteriori estimate:
x̂k = x̂−k +Kk[zk −Hkx̂

−
k ]

Update error covariance:
Pk = [In −KkHk]P

−
k

Output
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Figure 13: Operation cycle of the Kalman filter algorithm illustrating ‘pre-
dict and correct’ behaviour.

Some non-linear problems can be deemed quasilinear, which means
that the variation of the non-linear functionals φk and hk are pre-
dominantly linear about the value x0. That is,

φk(x0 + dx,u) ≈ φk(x0,u) + dx
∂φk(x,u)

∂x

∣∣∣∣
x=x0

, (34)

hk(x0 + dx) ≈ hk(x0) + dx
∂hk(x)

∂x

∣∣∣∣
x=x0

, (35)

which requires that φk and hk are differentiable at x0.
Through a linearisation of the state-space model of Equations 32

and 33 at each time instant around the most recent state estimate, the
standard Kalman filter equation from Section 3.4.2 can be applied.
The filter resulting from a linear approximation of the state transitions
and the relation of the measurement to the respective state is referred
to as the extended Kalman filter.

The linearisation of the functionals φk and hk is given by their
respective Jacobian matrices

Φ
[1]
k−1 =

∂φk−1(x,u)
∂x

∣∣∣∣
x=x̂k−1,u=uk−1

, (36)
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and

H
[1]
k =

∂hk(x)

∂x

∣∣∣∣
x=x̂k

. (37)

The ij-th entry of Φ[1]
k−1 is equal to the partial derivative of the i-th

component of φk−1(x) with respect to the j-th component of x. The
derivatives are evaluated at x = x̂k−1,u = uk−1. Likewise, the ij-th
entry of H[1]

k is equal to the partial derivative of the i-th component
of hk(x) with respect to the j-th component of x. The derivatives
are evaluated at x = x̂k. The superscript [1] denotes the first-order
approximation.

Similar to Equation 27, the predicted state estimate is given by

x̂−k = φk−1(xk−1,uk−1) , (38)

and the predicted measurement by

ẑk = hk(x̂
−
k ) . (39)

The a posteriori estimate is then, conditioned on the actual measure-
ment,

x̂k = x̂−k +Kk[zk − ẑk] . (40)

The corresponding a priori covariance matrix P−
k , the Kalman gain Kk,

and the a posteriori covariance matrix Pk are equal to Equations 29,
30, and 31 in Section 3.4.2. They are reproduced here with the linear
approximation of the state transition and measurement matrices for
convenience of presentation:

P−
k =Φ

[1]
k−1Pk−1Φ

[1]T
k−1 +Qk−1 , (41)

Kk = P−
kH

[1]T
k [H

[1]
k P

−
kH

[1]T
k +Rk]

−1 , (42)

Pk = [In −KkH
[1]
k ]P−

k . (43)

Figure 14 illustrates the ‘predict and correct’ behaviour of the exten-
ded Kalman filter algorithm. The time update and measurement update
steps are repeated recursively every time step, after an initialisation
of the parameters, similar to the classical Kalman filter algorithm. In
addition, the Jacobian matrices have to be computed, in order to lin-
earise the state-space model at each time instant around the most
recent state estimate.

Extended Kalman filtering is commonly used. In fact, it was the
first successful application of the Kalman filter [38]. Unlike its linear
counterpart, the extended Kalman filter may not necessarily be an
optimal estimator. Owing to its linearisation the EKF may quickly
diverge, if the process is modelled incorrectly or the initial state es-
timate is too imprecise.
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Initialisation of parameters

x0,P0,Q0,R0,

Time update

Compute a priori estimate:
x̂−k = φk−1(xk−1,uk−1)

Compute Jacobian matrix:
Φ

[1]
k−1 =

∂φk−1(x,u)
∂x

∣∣∣
x=x̂k−1,u=uk−1

Compute a priori error covariance:
P−
k =Φ

[1]
k−1Pk−1Φ

[1]T
k−1 +Qk−1

Measurement update

Compute Jacobian matrix:
H

[1]
k =

∂hk(x)
∂x

∣∣∣
x=x̂k

Compute Kalman gain:
Kk = P−

kH
[1]T
k [H

[1]
k P

−
kH

[1]T
k +Rk]

−1

Compute a posteriori estimate:
x̂k = x̂−k +Kk[zk −hk(x̂

−
k )]

Update error covariance:
Pk = [In −KkH

[1]
k ]P−

k

Output
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Figure 14: Operation cycle of the extended Kalman filter algorithm illustrat-
ing ‘predict and correct’ behaviour.



4
I M P L E M E N TAT I O N

This chapter describes the implementation of the filter algorithm pro-
posed by Bennett, Jafari and Gans in [7], based on the fundamentals
acquired in the previous chapters. Other than in [7], in which the
filter algorithm was tested moving a mechanical model of the leg by
hand, we used movement data from a human subject. After outlining
the initial situation, i. e. describing the GaitWatch system, including
orientation algorithms that were already implemented, the theoretical
design of the filter is elaborated in detail. Subsequently, the software
implementation and experiments are presented, followed by the res-
ults and their discussion.

4.1 initial situation

4.1.1 The GaitWatch System

As indicated above, to gather and preprocess movement data from
the subject, we used a system called GaitWatch [39], which was de-
signed to monitor the motion of patients by means of inertial sensors
attached to the body. It was developed at the Department of Neur-
ology of the Ludwig-Maximilians University in Munich, Germany,
in association with the Department of Signal Theory, Telematics and
Communications of the University of Granada, Spain.

4.1.1.1 Hardware

From the hardware perspective, the system is composed of a set of
magnetic and inertial sensors wired to a box containing a microcon-
troller. This microcontroller is in charge of collecting data from the
sensors embedded in the box, as well as from external measurement
units, and storing them on a memory card. The separate units are
placed on the patient’s trunk, arms, thighs, and shanks as shown in
Figure 15. The components of the three different kinds of subunits
are listed below:

• type a – thighs and shanks:

IMU Analog Combo Board with 5 Degrees of Freedom [40], con-
taining an IDG500 biaxial gyroscope, from which only y-axis is
actually used, with a measurement range of ±500◦/s [41] and a
±3 g triaxial accelerometer, ADXL335 [42].

27
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Figure 15: Placement of the GaitWatch components at the body, from [39].

• type b – arms:

IDG500 biaxial gyroscope with a measurement range of±500◦/s
[41].

• type c – trunk:

ADXL345 triaxial accelerometer with a programmable measure-
ment range of ±2/± 4/± 8/± 16 g [43], IMU3000 triaxial gyro-
scope with a programmable measurement range of ±250/ ±
500/± 1000/ ±3000◦/s [44], Micromag3 triaxial magnetometer
with a measurement range of ±11Gauss [45], AL-XAVRB board
containing an AVR ATxmega processor [46].

4.1.1.2 Software

In addition to the hardware, there was an existing Matlab® toolbox
consisting of routines for reading the data and carrying out the ne-
cessary calibration. Also, several algorithms that determine the mo-
tion intensity and compute the orientation of the human body from
the movement data were already implemented. There were three al-
gorithms for estimating the pitch angle of the thighs and shanks, as
described below:

• projection of the gravity vector: One way to obtain the
pitch angle from the inertial data is using the projection of the
gravity vector on the axes of the accelerometer, as described in
Section 2.4. The first algorithm computed the pitch angle ac-
cording to Equation 5.
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• integration of the angular rate: Another way to obtain the
pitch angle is the integration of the angular rate, as outlined
in Section 2.5. There are many different numerical integration
procedures. The existing algorithm used the approximation of
the integral according to the trapezoidal rule

θ(n) = θ0 +

∫nTs
0

ω(t)dt ≈ θ0 +
Ts

2

n∑

k=1

[ωk−1 +ωk] , (44)

where n,k ∈ N denote time normalised to the sample period
Ts, ωk the measured angular rate at instant k, and θ0 the angle
at k = 0. The implemented algorithm computed the angle re-
cursively as

θ(n) ≈ θ(n− 1) +
Ts

2
[ωk−1 +ωk] , θ(0) = θ0 . (45)

The initial value θ0 can be computed from the projection of
the gravity vector, assuming that the patient stands still when
the records are started. Figure 16 shows exemplary the result
of the first two algorithms applied to estimate the shank angle
with respect to the x-axis, according to the mechanical model
of the leg depicted in Figure 19. As can be seen in Figure 16,
the accelerometer-based approach does not suffer from drift but
delivers a very poor angle estimate during periods of motion,
especially with increasing motion intensity. On the other hand,
integrating the angular rate delivers an accurate angle estimate
during motion, but suffers from drift over time, which accounts
for an error in the estimate of more than 500◦ in only eighteen
seconds for this exemplary signal.

• kalman filter: The third algorithm fused the orientation angle
based on the projection of the gravity vector with the angle
based on the integration of the angular rate measured with the
gyroscope in a classical Kalman filter, without taking the motion
intensity into account [39]. The angles of the thigh and shank
are estimated independently. The result in comparison with the
projection of the gravity vector alone is depicted in Figure 17.

In tandem with the orientation angles estimated with the algorithms
mentioned above, an angle estimate based on a Qualisys® motion
capture system served as a reference. The Qualisys® uses high-speed
cameras in combination with optical markers placed on the legs, as
depicted in Figure 18. From the recorded trace of the markers in
space the reference angles of the thighs and shanks could be com-
puted using an existing algorithm.
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Figure 16: Pitch angle of the right shank with respect to the x-axis, obtained
by the projection of the gravity vector and by integrating the an-
gular rate, in comparison to the reference.
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Figure 17: Pitch angle of the right shank with respect to the x-axis, obtained
by the projection of the gravity vector and by sensor fusion of
accelerometer and gyroscope data in a classical Kalman filter, in
comparison to the reference.
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Figure 18: Human leg with optical markers, from [1].

4.2 theoretical design

This section maps the theoretical design of the system proposed by
Bennett, Jafari and Gans in [7] to the existing GaitWatch system. It
states the assigned coordinate frames and the conventions regarding
rotations about their axes. Furthermore, it presents the kinematic
model used to improve the angle estimates and the extended Kalman
filter algorithm with its underlying state-space model in detail.

4.2.1 Kinematic Model

The kinematic model relates the respective angles of the thigh and
shank about the hip and knee joint to the acceleration seen by the
wearable sensors. When walking in a straight line, the human leg
can be modelled as a two-link planar revolute robot [7]. Then, thighs
and shanks remain in a single plane, which is approximately parallel
to the direction of motion. As depicted in Figure 19, the revolute
joints of the pendulum robot represent the hip and knee joint, and
the two links the thigh and shank, respectively. The origin of the
inertial world frame is located at the base of link 1, the upper of both
links. The x-axis points forward, the y-axis points out from the hip
to the right, and the z-axis points down. This configuration follows
the right-hand rule, which can also be used to determine the sense of
rotation around the axes. The pitch angle θ1 is measured with respect
to the x-axis, and the pitch angle θ2 of link 2 with respect to link 1.

The IMU placed on the thighs and shanks measured the angular
velocity around the y-axis and the linear acceleration along the x and
z-axis, respectively. According to Spong and Hutchinson [47], the
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Figure 19: Kinematic model of the human leg, from [7].

x and z-displacement and its derivatives in the world frame are as
follows:

x = +l1 cos(θ1) + l2 cos(θ1 + θ2) (46)

ẋ = −l1θ̇1 sin(θ1) − l2(θ̇1 + θ̇2) sin(θ1 + θ2) (47)

ẍ = −l1[θ̇
2
1 cos(θ1) + θ̈1 sin(θ1)] − l2[(θ̇1 + θ̇2)2 cos(θ1 + θ2)

+(θ̈1 + θ̈2) sin(θ1 + θ2)] (48)

z = −l1 sin(θ1) − l2 sin(θ1 + θ2) (49)

ż = −l1θ̇1 cos(θ1) − l2(θ̇1 + θ̇2) cos(θ1 + θ2) (50)

z̈ = −l1[θ̈1 cos(θ1) − θ̇21 sin(θ1)] − l2[(θ̈1 + θ̈2) cos(θ1 + θ2)

−(θ̇1 + θ̇2)
2 sin(θ1 + θ2)] (51)

in which l1 and l2 are the lengths of the two links, respectively. Plug-
ging the a priori estimates of the angles θ1 and θ2 and their derivat-
ives, i. e. the angular rates ω1 and ω2, and the angular accelerations
α1 and α2, obtained with the EKF described in Section 4.2.2, into
Equations 48 and 51, we can estimate the respective motion-based
acceleration components ax and az in x and z-direction that sensor
2 will see in the world coordinate frame. Written as a function of
the state variables of the extended Kalman filter, Equations 48 and 51
yield
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ax = −l1[ω
2
1 cos(θ1) +α1 sin(θ1)] − l2[(ω1 +ω2)2 cos(θ1 + θ2)

+(α1 +α2) sin(θ1 + θ2)] (52)

az = −l1[α1 cos(θ1) −ω21 sin(θ1)] − l2[(α1 +α2) cos(θ1 + θ2)

−(ω1 +ω2)
2 sin(θ1 + θ2)] (53)

The orientation of the sensor frames at rest are different from the
world frame and dynamic when the pendulum is in motion. In or-
der to transform the values from the world frame to the dynamic
body frame of IMU 2, which is depicted in Figure 19, we used the
transformation matrix Ty(θ) from Equation 3. The body frame of
sensor two is not aligned with the world frame for θ1 = θ2 = 0.
Thus, in order to align both frames, an offset of 90◦ is required. With
θ = θ1 + θ2 + 90

◦, this yields

Ty(θ1 + θ2 + 90
◦) =

[
cos(θ1+θ2+90◦) 0 − sin(θ1+θ2+90◦)

0 1 0
sin(θ1+θ2+90◦) 0 cos(θ1+θ2+90◦)

]

=

[
− sin(θ1+θ2) 0 − cos(θ1+θ2)

0 1 0
cos(θ1+θ2) 0 − sin(θ1+θ2)

]
.

(54)

According to Equation 2, the rotated radial and tangential compon-
ents of the motion-based acceleration estimates in the body frame
of accelerometer 2, AX2 and AZ2 , are found by pre-multiplying the
transformation matrix with the acceleration vector in the world frame,
constituted of the results of Equations 52 and 53.

a =



aX2

aY2

aZ2


 = Ty(θ1 + θ2 + 90

◦)



ax

0

az


 ‖g‖

−1 (55)

The axial component AY2 is zero, since the leg is assumed to be ori-
ented perpendicular to the earth’s surface and thus the gravity vector
g is perpendicular to the y-axis. The term ‖g‖−1 normalises the
motion-based acceleration estimate to gravity, where ‖g‖ denotes the
magnitude of gravity.

Then, the motion based radial and tangential acceleration compon-
ents are subtracted from the sensor readings aX1m and aZ1m, which
leaves an estimate of the gravity based acceleration g that acts on the
sensor:

g =



gx

gy

gz


 ≈



aX2m

0

aZ2m


−



aX2

0

aZ2


 . (56)
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The angle estimate of the shank with respect to the x-axis, based on
the projection of the gravity vector on the axes of the accelerometer,
is then

θ1 + θ2 = atan2(gz,gx) − 180◦ . (57)

This improved angle estimate is then fused with the estimate based
on the integration of the angular rate measured with the gyroscope,
in order to reduce the estimation error due to gyroscope drift.

4.2.2 Extended Kalman Filter

4.2.2.1 The State-Space Model

The state-space model of the extended Kalman filter is given by the
state vector x ∈ Rn, with n = 10,

x =
[
x, z, θ1, ω1, α1, θ2, ω2, α2, β1, β2

]T
, (58)

where x and y correspond to the horizontal and vertical position of
the end of link 2 with respect to the origin of the world frame, i. e. the
hip joint. θ1 is the angle, ω1 the angular velocity, and α1 the angular
acceleration of the first joint, respectively. The corresponding values
for the second link are θ2, ω2, and α2. The biases of the gyroscopes
in the first and the second IMU are β1 and β2, respectively. They are
assumed to be constant or slowly time-varying.

The measurement vector z ∈ Rm, with m = 4, is given by

z =




z1

z2

z3

z4



=
[
ω1 +β1, ω1 +ω2 +β1 +β2, θ1, θ1 + θ2

]T
+ v ,

(59)
where v is the random measurement noise process, modelled as zero-
mean, Gaussian white noise. The element z1 represents the measure-
ment of the first link angular velocity, which is the sum of the first
link rotation and the gyroscope 1 bias. The element z2 represents the
measurement of the second link angular velocity, which is the sum
of the first and second link rotation and the bias of gyroscope 1 and
gyroscope 2. Finally, the element z3 is the angle estimate of the first
accelerometer and the element z4 the angle estimate of the second
accelerometer, which will see the angular displacement of both links.

According to Rowell [48], the plant dynamics of a system can be
expressed as a set of n coupled first-order ordinary differential equa-
tions, known as the state equations. The modelled system is governed
by the non-linear first-order ordinary differential equations
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ẋ = f(x, t) +w =




−l1ω1 sin(θ1)−l2(ω1+ω2) sin(θ1+θ2)
−l1ω1 cos(θ1)−l2(ω1+ω2) cos(θ1+θ2)

ω1
α1
0
ω2
α2
0
0
0



+w , (60)

where ẋ consists of the component-wise time derivatives of the state
vector x, expressed in terms of the state variables x1(t), . . . , xn(t). Its
elements are given by

ẋi = fi(x1(t), . . . , xn(t), t) +wi =
dxi
dt

+wi , i = 1, . . . ,n . (61)

The noise term w, modelled as zero-mean, Gaussian white noise
again represents the uncertainty in the model. Given this state-space
representation, the system state at any instant may be interpreted as a
point in an n-dimensional state space whose axes are the state vari-
ables. The dynamic state response x(t) can be interpreted as a traject-
ory traced out in the state space. The system described by Equation
60 is time-invariant, since it does not depend explicitly on time. Thus,
we may leave out the t and write from now on f(x) = f(x, t).

For a linear system in state-space form given by

ẋ = Fx , (62)

with a time-invariant system dynamics matrix F there is a state transition
matrixΦ(t− t0) that propagates the state of the system forward from
any time t0 to a time t, according to

x(t) =Φ(t− t0)x(t0) . (63)

The solution to the system described by Equation 62 is

x(t) = eF(t−t0)x(t0) , (64)

where x(t0) is an integration constant. As outlined in [37], the state
transition matrix can be found by a Taylor-series expansion of eF(t−t0),

Φ(t− t0) = e
F(t−t0) =

∞∑

k=0

Fn[t− t0]
n

k!

= In + F[t− t0]

+
F2[t− t0]

2

2!
+
F3[t− t0]

3

3!
+ · · · ,

(65)

where In ∈ Rn×n is the identity matrix. Truncating the Taylor series
after the first order terms yields the linear approximation of the funda-
mental matrix:
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Φ(t− t0) ≈ In + F[t− t0] . (66)

The discrete fundamental matrix that propagates the state of the sys-
tem forward from time step k to k+ 1 can be found by substituting
Ts for t− t0, which yields

Φk =Φ(Ts) ≈ In + FTs , (67)

where Ts is the sampling period. In the linear case Φk is constant.
Because the state equations of our system are non-linear, a first-

order approximation of the system dynamics matrix F is used, given
by the Jacobian of f(x)

F
[1]
k = Jf =




∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn

∂x1
· · · ∂fn

∂xn




=




0 0 A C 0 E G 0 0 0

0 0 B D 0 F H 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



x=x̂k

,

(68)

with

A = −l1ω1 cos(θ1) − l2(ω1 +ω2) cos(θ1 + θ2) ,

B = +l1ω1 sin(θ1) + l2(ω1 +ω2) sin(θ1 + θ2) ,

C = −l1 sin(θ1) − l2 sin(θ1 + θ2) ,

D = −l1 cos(θ1) − l2 cos(θ1 + θ2) ,

E = −l2(ω1 +ω2) cos(θ1 + θ2) ,

F = +l2(ω1 +ω2) sin(θ1 + θ2) ,

G = −l2 sin(θ1 + θ2) ,

H = −l2 cos(θ1 + θ2) .

The partial derivatives are evaluated at the state estimate x̂k. The
discrete state transition matrix must be recomputed every time step.
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Here the subscript k denotes the state transition matrix that propag-
ates the state at time step k to time step k+ 1. It is given by

Φ
[1]
k ≈ In + F

[1]
k Ts . (69)

4.2.2.2 The Filter Algorithm

The estimate x̂k−1 can be propagated forward to the a priori estim-
ate x̂−k by integrating the non-linear differential equations at each
sampling interval. Applying Euler integration Equation 38 yields

x̂−k = φk−1(x̂k−1, 0)

= x̂k−1 + f(x̂k−1)Ts ,
(70)

where Ts is the integration interval. The control input uk is equal to
zero since the system does not have any inputs. A higher-order nu-
merical integration procedure would not improve the a priori estimate
since the function f(x) is constant over time.

The relation between the states and the measurements is linear, ac-
cording to Equation 22. The measurement matrix H ∈ R3×10 is given
by

H =




0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 1 1

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0




. (71)

The process noise covariance matrix Q ∈ R10×10 is constant and
given by
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Q =




Cov(w1,w1) Cov(w1,w2) · · · Cov(w1,wn)

Cov(w2,w1) Cov(w2,w2) · · · Cov(w2,wn)

...
...

. . .
...

Cov(wn,w1) Cov(wn,w2) · · · Cov(wn,wn)




=




σ2d 0 0 0 0 0 0 0 0 0

0 σ2d 0 0 0 0 0 0 0 0

0 0
σ18θ1
9

σ8θ1
4

σ10θ1
5 0 0 0 0 0

0 0
σ8θ1
4

σ6θ1
3

σ4θ1
2 0 0 0 0 0

0 0
σ10θ1
5

σ4θ1
2 σ2θ1 0 0 0 0 0

0 0 0 0 0
σ18θ2
9

σ8θ2
4

σ10θ2
5 0 0

0 0 0 0 0
σ8θ2
4

σ6θ2
3

σ4θ2
2 0 0

0 0 0 0 0
σ10θ2
5

σ4θ2
2 σ2θ2 0 0

0 0 0 0 0 0 0 0 σ2β 0

0 0 0 0 0 0 0 0 0 σ2β




.

(72)

The diagonal elements represent the respective variances of the ele-
ments w1, . . . ,wn of the process noise vector w, due to the relation
Cov(wi,wi) = Var(wi). The other elements are the covariances of all
possible pairs of the random variables of the process noise vector. The
noise processes interfering with the state variables x and y, and β1
and β2, respectively, were modelled as independent. In contrast, the
covariances of the noise components interfering with the state vari-
ables θi,ωi,αi, i ∈ 1, 2, which account for the block-diagonal struc-
ture, reflect a random walk process, that is, the integration of a signal
perturbed by Gaussian white noise. A detailed derivation of the form
of the elements is found in [49]. The parameters σd,σθ1 ,σθ2 , and σβ
were found by an optimiser, which is described in Section 4.3.3.

The measurement noise covariance matrix R ∈ R4×4, is given by

R =




σ21 0 0 0

0 σ22 0 0

0 0 σ23 0

0 0 0 σ24




, (73)

The parameters σ21 and σ22 are constant. They are determined by
computing the sample variance of the measurement data during an
initialisation stage of Tinit = 2 s seconds, while the subject stands still.
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The variance of a finite data set with n samples x1, x2, . . . , xn is given
by

σ2 =
1

n− 1

n∑

k=1

(xk − µ)
2, where µ =

1

n

n∑

k=1

xk , (74)

with

n = Tinitfs . (75)

The variances σ23 and σ24 of the accelerometer-based angle estimates
were found by the optimiser and were set dynamically at each time
step k, based on the motion intensity. It toggles between σs and σf,
according to slow or fast motion, distinguished by a marker signal
mk:

σ23 =




σ23s mk = 0

σ23f mk = 1
. (76)

σ24 =




σ24s mk = 0

σ24f mk = 1
. (77)

In order to determine the marker signal we used the long term spec-
tral detector LTSD developed in [39], which distinguishes between
fast and slow motion by computing the long term spectral envelope
of the signal. The output of the LTSD is a marker signal which value
toggles between 1 and 0.

4.2.2.3 Summary of the Entire Filter Algorithm

The state estimates are computed recursively according to the time
update Equations 41, 70 and the measurement update Equations 28, 29,
and 31. The entire computation steps of the recursive filter algorithm
are summarised in Figure 20. Listing 1 in the appendix shows the
Matlab® implementation of the filter function.

4.3 experiments

The extended Kalman filter was tested and its results were compared
to the existing classical Kalman filter and the reference signal, by in-
terrelating the RMSE of each method. The orientation algorithms
were applied to movement data from a real subject. These data were
gathered at the Department of Neurology of the Klinikum Großhadern
in Munich, while the subject performed the following trial.
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Initialisation of parameters

x0,P0,H,Q,R0,

Time update

Compute fundamental matrix:
Φ

[1]
k−1 ≈ In + Fk−1Ts

Compute a priori estimate:
x̂−k = x̂k−1 + f(x̂k−1)Ts

Compute a priori error covariance:
P−
k =Φ

[1]
k−1Pk−1Φ

[1]T
k−1 +Qk−1

Correct sensor readings

Compute acceleration due to motion:
ax = −l1[ω

2
1 cos(θ1) +α1 sin(θ1)] − l2[(ω1 +ω2)2

· cos(θ1 + θ2) + (α1 +α2) sin(θ1 + θ2)]
az = −l1[α1 cos(θ1) −ω21 sin(θ1)] − l2[(α1 +α2)

· cos(θ1 + θ2) + (ω1 +ω2)
2 sin(θ1 + θ2)]

Compute gravity estimate:

g ≈
[
aX2m
0

aZ2m

]
− Ty(θ1 + θ2 + 90

◦)
[ ax
0
az

]
‖g‖−1

Compute corrected angle estimate:
θ1 + θ2 = atan2(gz,gx) − 180◦

Set measurement covariances:

σ23 =




σ23s mk = 0

σ23f mk = 1
, σ24 =




σ24s mk = 0

σ24f mk = 1

Measurement update

Compute Kalman gain:
Kk = P−

kH
T
k [HkP

−
kH

T
k +Rk]

−1

Compute a posteriori estimate:
x̂k = x̂−k +Kk[zk −Hkx̂

−
k ]

Update error covariance:
Pk = [I−KkHk]P

−
k

Output

[ Friday 23rd December, 2016 at 13:05 – classicthesis Version 2.0 ]

Figure 20: Entire computation steps of the recursive filter algorithm.
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4.3.1 Data Collection Protocol

The subject stood on a treadmill wearing the GaitWatch system on
its body. Then, the GaitWatch record was started and shortly after-
wards the treadmill was turned on. After a variable time, depending
on the treadmill speed and the walking distance, first the treadmill
was switched off, and then the GaitWatch records. The trial was per-
formed at walking speeds of 2 km/h, 4 km/h, and 6 km/h.

4.3.2 Initial Conditions

Each trial began with the subject standing still and it was assumed
that the subject’s legs were fully stretched. This leads to the following
initial state estimates:

x = 0m ,

θ1 = −90◦ ,

ω1 = 0
◦/s ,

β1 = µ1
◦/s ,

α1 = 0
◦/s2 ,

z = −(l1 + l2)m ,

θ2 = 0
◦ ,

ω2 = 0
◦/s ,

β2 = µ2
◦/s ,

α2 = 0
◦/s2 ,

(78)

where µ1 and µ2 are the mean values of the gyroscope signals collec-
ted during the initial Tinit = 2 s of the rest period before the subject
started moving. The mean value is given by

µ =
1

n

n∑

k=1

ωk , n = Tinitfs , (79)

where ωk is the angular velocity at instant k and fs the sampling
frequency.

The initial error covariance matrix was the identity matrix, P0 =

I10 ∈ R10×10. Its diagonal elements, that is, the variances of the ini-
tial state estimates, represent the confidence in the knowledge about
the initial state of the system and is crucial for the convergence of
the filter. Unlike the initial error covariance matrix of the classical
Kalman filter, it may cause the filter to diverge, in case the confidence
in the estimates is too small. Equally, too vague initial state estimates
can cause the filter to diverge.

4.3.3 Test Preparation

To test the filter algorithm and compare it with the existing classical
Kalman filter, a parameter optimiser was implemente. Based on the
optimal set of parameters for a given signal, we compared the newly
implemented filter algorithm against the classical Kalman filter. The
parameter optimisation function given by Listing 2 called an adapt-
ive Nelder-Mead simplex algorithm, which minimised the error func-
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2m/s 4m/s 6m/s

σ2d 10.0000 10.0000 10.0000

σ2θ1 0.0514 0.0209 0.4342

σ2θ2 0.0514 0.0209 0.4342

σ2β 0.0011 0.0001 0.0007

σ21 2.1767 3.6758 2.7102

σ22 2.9788 3.2287 1.7409

σ23s 11.5799 7.2881 5.6341

σ23f 50.8859 117.2099 56.9627

σ24s 45.1827 24.5344 88.4655

σ24f 265.8502 224.4809 222.4782

Table 1: Filter parameters.

tion E. Since we are interested in an accurate angle estimate of both
angles and thus need parameters that optimise both angle estimates,
we scalarise this multi-objective optimisation problem. Using linear
scalarisation yields

E(θ̂t, θ̂s) = RMSEθ̂t +RMSEθ̂s

=

√∑n
k=1(θ̂t,k − θt,k)

2

n
+

√∑n
k=1(θ̂s,k − θs,k)2

n
,

(80)

where θ̂t,k and θ̂s,k denote the thigh and shank angle at instant k,
estimated by the extended Kalman filter, and θt,k and θs,k the refer-
ence angles at instant k, respectively. The implementation of the error
function is shown in Listing 3. The optimiser returns the parameters
that minimise the error function.

4.3.3.1 Parameterisation

The parameters for the three different walking speeds in Table 1 were
determined by the optimisation routines. In order to improve the
legibility, all parameters are normalised to their respective units. That
is, since the variance is the square of the standard deviation, they are
normalised to the square of the unit of the corresponding element of
the state vector as stated in Section 4.3.2. For instance, the variance
σ2d of the displacement is normalised to m2.
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4.3.4 Test Execution

The testing procedure was as follows: First, the movement data of the
subject were loaded into the workspace. Next, the parameters of the
classical Kalman filter were optimised by an existing optimiser. Then,
the parameters of the extended Kalman filter were optimised with
the aforementioned EKF-optimiser. After each optimisation process
the respective angle estimation was computed. Subsequently, the ab-
solute RMSEs and the relative RMSE related to the one obtained with
the classical Kalman filter were computed. Finally, the results were
displayed in the console and depicted in four plots: The thigh and
shank angle estimate, respectively, the RMSE comparison, and the ac-
celeration correction. The Matlab® code for the first data set is given
in Listing 4. The results are presented in the next section.

4.4 results

The results of the experiments are presented as follows:

• thigh angles: Comparison of the temporal courses of the pitch
angles of the right thigh with respect to the x-axis obtained by
projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference, for
the three different walking speeds, depicted in Figures 21, 25,
and 29.

• shank angles: Comparison of the temporal courses of the pitch
angles of the right shank with respect to the x-axis obtained by
projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference, for
the three different walking speeds, depicted in Figures 22, 26,
and 30.

• rmse comparison: Root-mean-square error comparison of angle
estimations by projection of the gravity vector, classical Kalman
filtering, and extended Kalman filtering, for the three different
walking speeds, depicted in Figures 23, 27, and 31.

• acceleration correction: Comparison of the accelerometer-
based shank angles with respect to the x-axis with and without
correction of the acceleration signal, for the three different walk-
ing speeds, depicted in Figures 24, 28, and 32.

The entire absolute and relative RMSEs are summarised in Table 2.
This leads to an average improvement of the extended Kalman filter
output with respect to the classical Kalman filter by a relative RMSE
of 28.52% and an average improvement of the motion-corrected accel-
erometer based angle estimate by a relative RMSE of 8.96%.
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Figure 21: Pitch angle of the right thigh with respect to the x-axis, obtained
by projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference. Walk-
ing speed: 2 km/h.
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Figure 22: Pitch angle of the right shank with respect to the x-axis, obtained
by projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference. Walk-
ing speed: 2 km/h.
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Figure 23: Root-mean-square error comparison of angle estimation, ob-
tained by projection of the gravity vector, classical Kalman fil-
tering, and extended Kalman filtering. Walking speed: 2 km/h.
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Figure 24: Accelerometer-based shank angle with respect to the x-axis with
and without correction of acceleration signal. Walking speed:
2 km/h.
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Figure 25: Pitch angle of the right thigh with respect to the x-axis, obtained
by projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference. Walk-
ing speed: 4 km/h.
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Figure 26: Pitch angle of the right shank with respect to the x-axis, obtained
by projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference. Walk-
ing speed: 4 km/h.
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Figure 27: Root-mean-square error comparison of angle estimation, ob-
tained by projection of the gravity vector, classical Kalman fil-
tering, and extended Kalman filtering. Walking speed: 4 km/h.
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Figure 28: Accelerometer-based shank angle with respect to the x-axis with
and without correction of acceleration signal. Walking speed:
4 km/h.
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Figure 29: Pitch angle of the right thigh with respect to the x-axis, obtained
by projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference. Walk-
ing speed: 6 km/h.
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Figure 30: Pitch angle of the right shank with respect to the x-axis, obtained
by projection of the gravity vector, classical Kalman filtering, and
extended Kalman filtering, in comparison to the reference. Walk-
ing speed: 6 km/h.
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Figure 31: Root-mean-square error comparison of angle estimation, ob-
tained by projection of the gravity vector, classical Kalman fil-
tering, and extended Kalman filtering. Walking speed: 6 km/h.
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Figure 32: Accelerometer-based shank angle with respect to the x-axis with
and without correction of acceleration signal. Walking speed:
6 km/h.
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4.5 discussion

After the presentation of the results, we now proceed to analysing
them in detail. According to Table 2 and Figures 24 and 28, the
RMSEs of the motion-corrected accelerometer-based angle estimates
while walking at 2 km/h and 4 km/h were only slightly different from
the raw accelerometer-based angle estimates. This could be explained
by the simple kinematic model of the leg. Even though it considers
the motion of the leg in x and z-direction with respect to the ori-
gin of the world coordinate frame, that is the hip joint, it does not
consider motion of the entire system itself. However, while walking,
the human body rotates about the hip joint, which causes motion
of the respective opposite hip joint. Additionally, the tension of the
calf muscles and the resulting stretching of the foot moves the entire
body upwards, including the hip joint. That means that the origin of
the world coordinate frame of the kinematic model moves, contrary
to the assumption made in the model. This movement causes not
only an additional acceleration component in the sensor signal while
moving the leg in the air, but also a quite severe impact on the accel-
eration signal when touching the ground with the foot. Another fact
that is not considered in the simple model is motion beyond the xz-
plane. Moreover, the lengths of the links was unknown and thus only
estimated. Finally, the sensor position on the thigh and shank was
not exactly known because the sensors were attached to the leg with
elastic straps while the subject wore cloths, but it was assumed that
they are perfectly aligned with the thighs and shanks. As the trend
of the relative RMSEs of the accelerometer-based angle estimates in
the fourth row of Table 2 shows, the motion correction works better
for faster motions, which indicates the importance of the correction
at higher walking speeds.

Even though the acceleration correction does not benefit the RMSE
of the accelerometer-based angle estimate for walking speeds of 2 km/h

and 4 km/h, the overall improvement of the filter output is significant
for all three walking speeds, as stated in the fifth row of Table 2.
This improvement could be caused by a better filter tuning of the ex-
tended Kalman filter, and suboptimal tuning of the classical Kalman
filter. The parameters found in an optimisation process, are not ne-
cessarily optimal. Due to the fact that the employed optimiser does
not consider all possible combinations of the parameters, but instead
finds local minima of the error function, the parameters may still be
somewhat less than optimal and are strongly dependent on the ini-
tial guess. As one can see in Figures 24, 28, and 32, the motion-based
acceleration correction improves the angle estimate in some intervals,
but even worsens it in others. The Kalman filter compensates those
deviations trusting on the state-space model. The newly implemen-
ted filter algorithm is based on a more complete state-space model.
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For instance, it combines information about both thigh and shank in
the same state-space model, whereas the classical Kalman filter estim-
ates the thigh and shank angle independently. This could explain a
more accurate estimate, compared to the classical Kalman filter, for
intervals in which the acceleration correction does not decrease the
RMSE of the accelerometer-based angle estimate.



5
C O N C L U S I O N A N D F U T U R E W O R K

5.1 conclusion

Gait analysis is a useful tool both in clinical practice and biomech-
anical research. In this work an extended Kalman filter based on a
kinematic model of the leg was implemented in Matlab®, along with
a parameter optimiser that was necessary for testing. Then, the filter
algorithm was applied to movement data of a human subject walking
on a treadmill at different speeds. The experiments have shown that
the filter algorithm can improve the angle estimates by an average
RMSE that was 28.52% smaller, compared to the classical Kalman fil-
ter. However, the motion-based acceleration correction works better
for faster motion. In order to replace a camera-based motion capture
system with low cost wearable MARG sensors, some technical details
still need to be improved. Numerous possible reasons for the beha-
viour seen in the results of the experiments were proposed. These
include a lack of completeness of the kinematic model of the leg, un-
known lengths of the thighs and shanks, and a non-optimal filter
tuning of the classical Kalman filter, which served as a reference.

Personally, I have learned a lot in the eight months that I spent
in Granada for writing this thesis and completing the internship in
advance. Among others, I have come to know many new work meth-
ods, due to being exposed to people from different cultures. I gained
experience in scientific research and a deeper understanding of hu-
man body motion analysis, in particular gait analysis, as well as how
Kalman filtering benefits the accuracy of the orientation estimation. I
improved my Matlab® skills and I am now familiar with tools such
as GitHub and Pivotal Tracker, which make working in a team much
easier and significantly more efficient. While working at the research
centre, I could improve my oral and written English skills.

All in all it was a great experience, professionally as well as person-
ally. I truly and unreservedly recommend such a stay to every single
university student.

5.2 future work

As discussed above, there are a variety of possible improvements
regarding the kinematic model and the filter tuning, which lead to
the following possible future work. One could extend the kinematic
model of the leg, in order to take more complex movements of the
body and especially the movement of the hip into account. Further-
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more, the implemented orientation algorithm needs to be tested with
a larger set of data from real subjects, in order to proof its validity and
robustness. Especially, whether it delivers accurate orientation estim-
ations without fine-tuning the parameters by means of an optimiser
and a known reference for every patient and trial, needs to be tested.
Finally, the acceleration correction based on a kinematic model could
be applied to the accelerometer-based thigh angle estimation as well.

Regarding the GaitWatch system itself, the acceleration correction
could be extended to the orientation estimation of the arms and the
trunk. Then, the GaitWatch system could replace the camera-based
motion capture systems in the future and would thus add a signific-
ant value to its medical applications in gait analysis.
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A P P E N D I X

a.1 matlab® code

Listing 1: Matlab® code file ‘fusion_EKF.m’

1 function [theta1, theta2, theta12_c, a_m, X, par] = ...

2 fusion_EKF(gyro_thigh_y, gyro_shank_y, ...

3 acc_thigh_x, acc_thigh_z, ...

4 acc_shank_x, acc_shank_z, ...

5 fs, l1, l2, p)

6

7 % FUNCTION fusion_EKF applies an extended Kalman filter in order

8 % to fuse the accelerometer and gyroscope dataand thus obtain an

9 % accurate orientation estimate of the thighs and shanks.

10 %

11 % Input arguments:

12 % |_ ’gyro_thigh_y’: Row vector containing the angular rate of

13 % the thigh about the y-axis in degrees per

14 % second.

15 % |_ ’gyro_shank_y’: Row vector containing the angular rate of

16 % the shank about the y-axis in degrees per

17 % second.

18 % |_ ’acc_thigh_x’: Row vector containing the linear

19 % acceleration of the thigh along the x-axis

20 % in g.

21 % |_ ’acc_thigh_z’: Row vector containing the linear

22 % acceleration of the thigh along the z-axis

23 % in g.

24 % |_ ’acc_shank_x’: Row vector containing the linear

25 % acceleration of the shank along the x-axis

26 % in g.

27 % |_ ’acc_shank_z’: Row vector containing the linear

28 % acceleration of the shank along the z-axis

29 % in g.

30 % |_ ’fs’: Sampling frecuency in Hertz. Must be real

31 % positive.

32 % |_ ’l1’: Length of the thigh in m. Must be real

33 % positive.

34 % |_ ’l2’: Length of the shank in m. Must be real

35 % positive.

36 % |_ ’p’: Row vector consisting of the filter

37 % parameters:

38 % ’sigma_s_3’, ’sigma_s_4’,

39 % ’sigma_f_3’, ’sigma_f_4’,

40 % ’sigma_b’, ’sigma_t1’.

41 % These parameters can be found by means of
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42 % the parameter optimiser ’optimize_EFK’

43 %

44 % Output:

45 % |_ ’theta1’: Row vector containing the thigh angle with

46 % respect to the x-axis of the world frame

47 % in radians.

48 % |_ ’theta2’: Row vector containing the shank angle with

49 % respect to the thigh in degrees.

50 % |_ ’theta12_c’: Row vector containing the motion- corrected

51 % angle theta_1 + theta_2 in degrees.

52 % |_ ’a_m’: Row vector containing the estimate of the

53 % acceleration that sensor 2 will see due to

54 % motion.

55 % |_ ’X’: 10 x length(gyro_thigh_y) matrix

56 % containing the internal state vector at

57 % each instant as columns.

58 %

59 % IMPORTANT NOTE: ’gyro_thigh_y’, ’gyro_shank_y’,

60 % ’acc_thigh_x’, ’acc_thigh_z’,

61 % ’acc_shank_x’, and ’acc_shank_z’

62 % must have the same length. Otherwise, an

63 % error will be returned.

64 % -----------------------------------------------------

65 % Authors: Robin Weiss

66 % Entity: University of Applied Sciences

67 % Munster, Munster, Germany

68 % Last modification: 13/05/2015

69 % -----------------------------------------------------

70

71 % 1) Check input arguments.

72 if ~isequal(length(gyro_thigh_y), ...

73 length(gyro_shank_y), ...

74 length(acc_thigh_x), ...

75 length(acc_thigh_z), ...

76 length(acc_shank_x), ...

77 length(acc_shank_z))

78 error([ ’ Input arguments ’ ’gyro_thigh_y ’ ’ , ’, ...

79 ’ ’ ’acc_thigh_x ’ ’ , ’ ’acc_thigh_z ’ ’ , ’, ...

80 ’ ’ ’acc_shank_x ’ ’ , ’ ’acc_shank_z ’ ’ , ’, ...

81 ’must have the same length . ’]);
82 end

83

84 if (fs <= 0 || ~isreal(fs))

85 error([ ’ Input argument ’ ’ fs ’ ’ must be real ’, ...

86 ’ positive . ’]);
87 end

88

89 if (l1 <= 0 || ~isreal(l1))

90 error([ ’ Input argument ’ ’a1 ’ ’ must be real ’, ...

91 ’ positive . ’]);
92 end

93
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94 if (l2 <= 0 || ~isreal(l2))

95 error([ ’ Input parameter ’ ’a2 ’ ’ must be real ’, ...

96 ’ positive . ’]);
97 end

98

99 % 2) Import GaitWatch and WaGyroMag functions library.

100 % All existing functions have to be called using either

101 % ’gw.functionName’ or ’wag.functionName’.

102 gw = gwLibrary;

103 wag = wagLibrary;

104

105 % 3) Compute the sampling period and the length of the signal

106 % vectors.

107 Ts = 1 / fs;

108 len = length(gyro_thigh_y);

109

110 % 4) Set the magnitude of gravity.

111 gravity = 9.81;

112

113 % 5) Compute correction factor. This factor will be used

114 % throughout the entire code in order to convert degrees into

115 % radians.

116 c_w = pi / 180;

117

118 % 6) Initialise output vectors.

119 theta1 = zeros(1, len);

120 theta2 = zeros(1, len);

121 theta12_c = zeros(1, len);

122 a_m = zeros(3, len);

123 X = zeros(10, len);

124

125 % 7) Compute intensity level.

126 lwin_ltsd = 20;

127 threshold_ltsd = 4;

128 shift_ltsd = 19;

129 input_signal = sqrt(acc_shank_x.^2+acc_shank_z.^2);

130 [V_fsd, T_fsd] = wag.ltsd(input_signal’, lwin_ltsd, ...

131 shift_ltsd, 512, threshold_ltsd);

132

133 % 8) Determine marker signal.

134 [marker, ~] = gw.compEstMark(V_fsd, T_fsd, ...

135 input_signal, lwin_ltsd, ...

136 shift_ltsd);

137

138 % INITIALISATION OF PARAMETERS %

139

140 % 9) Compute mean of the first two seconds of the gyroscope

signals.

141 mu1 = mean(gyro_thigh_y(1:2*fs));

142 mu2 = mean(gyro_shank_y(1:2*fs));

143

144 % 10) Initialise the state vector.
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145 x = [0, -(l1+l2), -100, 0, 0, 0, 0, 0, mu1, mu2]’;

146

147 % 11) Initialise the error covariance matrix.

148 P = diag(ones(1, 10) * 1);

149

150 % 12) Define the measurement matrix.

151 H = [0 0 0 1 0 0 0 0 1 0; ...

152 0 0 0 1 0 0 1 0 1 1; ...

153 0 0 1 0 0 0 0 0 0 0; ...

154 0 0 1 0 0 1 0 0 0 0];

155

156 % 13) Define process noise covariance matrix.

157 sigma_d_sq = 10;

158 sigma_t1_sq = p(6);

159 sigma_t2_sq = p(6);

160 sigma_b_sq = p(5);

161 Q = [...

162 sigma_d_sq 0 0 0 0 0 0 0 0 0; ...

163 0 sigma_d_sq 0 0 0 0 0 0 0 0; ...

164 0 0 sigma_t1_sq^9/9 sigma_t1_sq^4/4 sigma_t1_sq^5/5 0 0 0 0 0;

...

165 0 0 sigma_t1_sq^4/4 sigma_t1_sq^3/3 sigma_t1_sq^2/2 0 0 0 0 0;

...

166 0 0 sigma_t1_sq^5/5 sigma_t1_sq^2/2 sigma_t1_sq 0 0 0 0 0; ...

167 0 0 0 0 0 sigma_t2_sq^9/9 sigma_t2_sq^4/4 sigma_t2_sq^5/5 0 0;

...

168 0 0 0 0 0 sigma_t2_sq^4/4 sigma_t2_sq^3/3 sigma_t2_sq^2/2 0 0;

...

169 0 0 0 0 0 sigma_t2_sq^5/5 sigma_t2_sq^2/2 sigma_t2_sq 0 0; ...

170 0 0 0 0 0 0 0 0 sigma_b_sq 0; ...

171 0 0 0 0 0 0 0 0 0 sigma_b_sq];

172

173 % 14) Compute sample variance of the first two

174 % seconds of the gyroscope signals.

175 sigma_1_sq = var(gyro_thigh_y(1:2*fs));

176 sigma_2_sq = var(gyro_shank_y(1:2*fs));

177

178 % 15) Define measurement noise covariance matrix.

179 sigma_s3_sq = p(1);

180 sigma_s4_sq = p(2);

181 sigma_f3_sq = p(3);

182 sigma_f4_sq = p(4);

183 R = [sigma_1_sq 0 0 0; ...

184 0 sigma_2_sq 0 0; ...

185 0 0 sigma_s3_sq 0; ...

186 0 0 0 sigma_s4_sq];

187

188 % Map parameter vector to output

189 par = [sigma_d_sq, sigma_t1_sq, sigma_t2_sq, ...

190 sigma_b_sq, sigma_1_sq, sigma_2_sq, ...

191 sigma_s3_sq, sigma_f3_sq, sigma_s4_sq, ...

192 sigma_f4_sq];
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193

194 % 16) Define matrix function f.

195 function f_k = f

196

197 f_k = [- l1 * c_w * x(4) * sind(x(3)) ...

198 - l2 * c_w * (x(4) + x(7)) * sind(x(3) + x(6)); ...

199 - l1 * c_w * x(4) * cosd(x(3)) ...

200 - l2 * c_w * (x(4) + x(7)) * cosd(x(3) + x(6)); ...

201 x(4);

202 x(5);

203 0;

204 x(7);

205 x(8);

206 0;

207 0;

208 0];

209

210 end

211

212 % 17) Define Jacobian of F.

213 function F_k = F

214

215 A = - l1 * c_w * x(4) * cosd(x(3)) ...

216 - l2 * c_w * (x(4) + x(7)) * cosd(x(3) + x(6));

217 B = + l1 * c_w * x(4) * sind(x(3)) ...

218 + l2 * c_w * (x(4) + x(7)) * sind(x(3) + x(6));

219 C = - l1 * sind(x(3)) - l2 * sind(x(3) + x(6));

220 D = - l1 * cosd(x(3)) - l2 * cosd(x(3) + x(6));

221 E = - l2 * c_w * (x(4) + x(7)) * cosd(x(3) + x(6));

222 F = + l2 * c_w * (x(4) + x(7)) * sind(x(3) + x(6));

223 G = - l2 * sind(x(3) + x(6));

224 h = - l2 * cosd(x(3) + x(6));

225

226 F_k = [0, 0, A, C, 0, E, G, 0, 0, 0; ...

227 0, 0, B, D, 0, F, h, 0, 0, 0; ...

228 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; ...

229 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; ...

230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...

231 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; ...

232 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; ...

233 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...

234 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...

235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

236

237 end

238

239 % 18) Filter loop.

240 for i=1:1:len

241

242 % TIME UPDATE %

243

244 % Compute fundamental matrix.
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245 Phi = eye(10) + F * Ts;

246

247 % Compute a priori state estimate.

248 x = x + f * Ts;

249

250 % Compute a priori error covariance matrix.

251 P = Phi * P * Phi’ + Q;

252

253 % CORRECT SENSOR READINGS %

254

255 % Compute acceleration in the world frame that occurs due to

256 % motion, based on a priori state estimate.

257 ax = - l1 * ((c_w * x(4))^2 * cosd(x(3)) ...

258 + c_w * x(5) * sind(x(3))) ...

259 - l2 * ((c_w * x(4) + c_w * x(7))^2 ...

260 * cosd(x(3) + x(6)) ...

261 + c_w * (x(5) + x(8)) * sind(x(3) + x(6)));

262 az = - l1 * (c_w * x(5) * cosd(x(3)) ...

263 - (c_w * x(4))^2 * sind(x(3))) ...

264 - l2 * (c_w * (x(5) + x(8)) ...

265 * cosd(x(3) + x(6)) ...

266 - (c_w * x(4) + c_w * x(7))^2 ...

267 * sind(x(3) + x(6)));

268

269 % Normalise acceleration to gravity.

270 ax_n = ax / gravity;

271 az_n = az / gravity;

272

273 % Compute transformation matrix

274 Tz = [cosd(x(3) + x(6) + 90), 0, ...

275 -sind(x(3) + x(6) + 90); 0, 1, 0; ...

276 sind(x(3) + x(6) + 90), 0, ...

277 cosd(x(3) + x(6) + 90)];

278

279 % Rotate acceleration to body frame.

280 a_mb = Tz * [ax_n; 0; az_n];

281

282 % Compute gravity estimate by subtracting motion-based

283 % acceleration from sensor readings.

284 g_c = [acc_shank_x(i); 0; acc_shank_z(i)] - a_mb;

285

286 % Constitute the measurement vector from the gyroscope

287 % signals, theta_1, and the corrected angle estimate

288 % theta_1 + theta_2.

289 z = [gyro_thigh_y(i); gyro_shank_y(i); 0; 0];

290 z(3) = atan2d(acc_thigh_z(i), acc_thigh_x(i)) - 180;

291 z(4) = atan2d(g_c(3), g_c(1)) - 180;

292

293 % Output map.

294 theta12_c(i) = z(4);

295 a_m(:, i) = a_mb;

296
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297 % Set sigma_3 in measurement noise covariance matrix

298 % according to motion intensity.

299 if marker(i) == 1

300 R(3, 3) = sigma_f3_sq;

301 R(4, 4) = sigma_f4_sq;

302 end

303

304 if marker(i) == 0

305 R(3, 3) = sigma_s3_sq;

306 R(4, 4) = sigma_s4_sq;

307 end

308

309 % MEASUREMENT UPDATE %

310

311 % Compute Kalman gain.

312 K = P * H’ / (H * P * H’ + R);

313

314 % Compute a posteriori estimate.

315 x = x + K * (z - H * x);

316

317 % Update error covariance matrix.

318 P = (eye(10) - K * H) * P;

319

320 % Map internal states to output vector.

321 theta1(i) = x(3);

322 theta2(i) = x(6);

323

324 % Map the entire state vector to the output.

325 X(:, i) = x;

326

327 end

328

329 end

Listing 2: Matlab® code file ‘optimise_EKF.m’

1 function [x_min, f_min, ct] = optimize_EKF( ...

2 gyro_thigh_y, gyro_shank_y, ...

3 acc_thigh_x, acc_thigh_z, ...

4 acc_shank_x, acc_shank_z, ...

5 fs, l1, l2, ref_angles, p0, ...

6 rmse_off)

7

8 % FUNCTION OPTIMIZE_EKF uses an adaptive Nelder-Mead

9 % simplex ANMS algorithm to find the optimal parameters

10 % of the Extended Kalman filter.

11 %

12 % Input arguments:

13 % |_ ’gyro_thigh_y’: Row vector containing the angular

14 % rate of the thigh about the

15 % y-axis in radians per second.

16 % |_ ’gyro_shank_y’: Row vector containing the angular
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17 % rate of the shank about the

18 % y-axis in radians per second.

19 % |_ ’acc_thigh_x’: Row vector containing the linear

20 % acceleration of the thigh along

21 % the x-axis in g.

22 % |_ ’acc_thigh_z’: Row vector containing the linear

23 % acceleration of the thigh along

24 % the z-axis in g.

25 % |_ ’acc_shank_x’: Row vector containing the linear

26 % acceleration of the shank along

27 % the x-axis in g.

28 % |_ ’acc_shank_z’: Row vector containing the linear

29 % acceleration of the shank along

30 % the z-axis in g.

31 % |_ ’fs’: Sampling frecuency in Hertz. Must

32 % be real positive.

33 % |_ ’l1’: Length of the thigh in m. Must be

34 % real positive.

35 % |_ ’l2’: Length of the shank in m. Must be

36 % real positive.

37 % |_ ’p’: Row vector consisting of the

38 % filter parameters sigma_t1,

39 % sigma_t2, sigma_b, sigma_f_1,

40 % sigma_f_2, sigma_s_1, sigma_s_2.

41 % |_ ’ref_angle’: Orientation angle reference.

42 % |_ ’p0’: Initial value of the parameters

43 % to be optimized.

44 % |_ ’rmse_off’: Offset in the RMSE computation.

45 %

46 % % Output:

47 % |_ ’xmin’: Value of the parameters that

48 % minimize the error function.

49 % |_ ’fmin’: Minimum value of the error

50 % function.

51 % |_ ’ct’: Number of algorithm iterations

52 % to find the minimum.

53

54 % 1) Set variables.

55 % -----------------------------------------------------

56 global gyro_thigh_y_g; gyro_thigh_y_g = gyro_thigh_y;

57 global gyro_shank_y_g; gyro_shank_y_g = gyro_shank_y;

58 global acc_thigh_x_g; acc_thigh_x_g = acc_thigh_x;

59 global acc_thigh_z_g; acc_thigh_z_g = acc_thigh_z;

60 global acc_shank_x_g; acc_shank_x_g = acc_shank_x;

61 global acc_shank_z_g; acc_shank_z_g = acc_shank_z;

62 global fs_g; fs_g = fs;

63 global l1_g; l1_g = l1;

64 global l2_g; l2_g = l2;

65 global true_angles; true_angles = ref_angles;

66 global rmse_offset; rmse_offset = rmse_off;

67

68 % 2) Call the minimisation routine.
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69 % -----------------------------------------------------

70 disp( ’Optimising parameters of extended Kalman Fil ter . . . ’);
71

72 % Set tolerance limit between the minimum values found

73 % in subsequent iterations of the algorithm.

74 tol = 10^-6;

75

76 % Set maximum number of evaluations of the error

77 % function.

78 max_feval = 5000;

79

80 % Call ANMS algorithm which minimises the error function.

81 [x_min, f_min, ct] = ANMS(@eofEKF, p0, tol, max_feval);

82

83 end

Listing 3: Matlab® code file ‘eofEKF.m’

1 function F = eofEKF(p)

2

3 % FUNCTION EOFKALMAN is the error function to be

4 % minimised: That is, the sum of the RMSE between the

5 % actual angle and the estiamted orientation angle

6 % computed with the extended Kalman filter.

7 %

8 % Input arguments:

9 % |_ ’p’: Vector of initial value of the parameters

10 % to be optimized.

11 %

12 % Output:

13 % |_ ’F’: Value of the error function.

14

15 % 1) Set variables.

16 % -----------------------------------------------------

17 global gyro_thigh_y_g;

18 global gyro_shank_y_g;

19 global acc_thigh_x_g;

20 global acc_thigh_z_g;

21 global acc_shank_x_g;

22 global acc_shank_z_g;

23 global fs_g;

24 global l1_g;

25 global l2_g;

26 global true_angles;

27 global rmse_offset;

28

29 % 3) Estimate the orientation angle using the extended

30 % Kalman Filter.

31 [theta1, theta2, ~, ~, ~] = fusion_EKF(...

32 gyro_thigh_y_g, gyro_shank_y_g, ...

33 acc_thigh_x_g, acc_thigh_z_g, ...

34 acc_shank_x_g, acc_shank_z_g, ...
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35 fs_g, l1_g, l2_g, p);

36

37 thigh_angle_EKF = theta1;

38 shank_angle_EKF = theta1 + theta2;

39

40 % 4) Compute the error function.

41 F1 = sqrt(mean((true_angles(1, rmse_offset : end) - ...

42 thigh_angle_EKF(rmse_offset : end)) .^ 2));

43 F2 = sqrt(mean((true_angles(2, rmse_offset : end) - ...

44 shank_angle_EKF(rmse_offset : end)) .^ 2));

45

46 F = F1 + F2;

Listing 4: Matlab® code file ‘EKF_experiments_1.m’

1 %% 0) Initialisation \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

2 % -----------------------------------------------------

3

4 clear all; close all; clc;

5

6 % Generate Tikz-pictures: Yes (1), or no (0).

7 tikz = 1;

8

9 % Load existing signals of the GaitWatch and the

10 % Qualisys motion capture system.

11 load( ’GaitWatch_data_1 .mat ’);
12 load( ’Qualisys_data_1 .mat ’);
13

14 % Import GaitWatch and WaGyroMag functions library.

15 % All existing functions have to be called using

16 % either ’gw.functionName’ or ’wag.functionName’.

17 gw = gwLibrary;

18 wag = wagLibrary;

19

20 % Initialise number of figure.

21 n = 4;

22

23 % Set value of the magnitude of the gravity vector.

24 g = 9.81;

25

26 % Set the first and the last sample, that is, the

27 % interval of the signal that is used for the following

28 % computations.

29 n1 = 1;

30 n2 = 24 * f;

31

32 %% 1) Optimise filter parameters \\\\\\\\\\\\\\\\\\\\\\

33 % -----------------------------------------------------

34

35 % Set RMSE offset.

36 rmse_offset = 1;

37
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38 % ---KALMAN FILTER THIGH-------------------------------

39

40 % Set initial value of parameters;

41 p0_KF = [1000 0.001];

42

43 % Call the optimization routine.

44 [xmin, fmin, ct] = gw.optimize_KF( ...

45 g_Y_right_thigh_1_C(n1:n2)’, ...

46 pitch_acc_right_thigh(n1:n2)’, ...

47 f, var(pitch_acc_right_thigh(n1:n2)), ...

48 var(pitch_acc_right_thigh(n1:n2)), ...

49 var(g_Y_right_thigh_1_C(n1:n2)), ...

50 pitch_acc_right_thigh(1), ...

51 pitch_QS_right_thigh(n1:n2), ...

52 p0_KF, rmse_offset);

53

54 fprintf( ’−−−−−−−−−−−−−KF OPTIMISATION−−−−−−−−−−−−\n’);
55 fprintf([ ’The optimisation process finished in %d ’, ...

56 ’ iterations .\n’], ct);

57 fprintf( ’The minimum RMSE found is : %0.4f\n’, fmin);

58 fprintf([ ’Optimal parameters are : \n −Alpha: %0.4f ’, ...

59 ’\n −Beta : %0.4f\n’], xmin(1), xmin(2))

60 fprintf( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n’)
61

62 % Extract optimal parameters.

63 opt_alpha_KF = xmin(1);

64 opt_beta_KF = xmin(2);

65

66 % Compute thigh angle.

67 pitch_KF_right_thigh = gw.fusion_KF( ...

68 g_Y_right_thigh_1_C, pitch_acc_right_thigh, ...

69 f, var(pitch_acc_right_thigh), ...

70 var(pitch_acc_right_thigh),...

71 var(g_Y_right_thigh_1_C), opt_alpha_KF, ...

72 opt_beta_KF, pitch_acc_right_thigh(1));

73

74 % ---KALMAN FILTER SHANK-------------------------------

75

76 % Set initial value of parameters;

77 p0_KF = [1000 0.001];

78

79 % Call the optimization routine.

80 [xmin, fmin, ct] = gw.optimize_KF( ...

81 g_Y_right_shank_1_C(n1:n2)’, ...

82 pitch_acc_right_shank(n1:n2)’, f, ...

83 var(pitch_acc_right_shank(n1:n2)), ...

84 var(pitch_acc_right_shank(n1:n2)),...

85 var(g_Y_right_shank_1_C(n1:n2)), ...

86 pitch_acc_right_shank(1), ...

87 pitch_QS_right_shank(n1:n2), ...

88 p0_KF, rmse_offset);

89
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90 fprintf( ’−−−−−−−−−−−−−KF OPTIMISATION−−−−−−−−−−−−\n’);
91 fprintf([ ’The optimisation process finished in %d ’, ...

92 ’ iterations .\n’], ct);

93 fprintf( ’The minimum RMSE found is : %0.4f\n’, fmin);

94 fprintf([ ’Optimal parameters are : \n −Alpha: %0.4f ’, ...

95 ’\n −Beta : %0.4f\n’], xmin(1), xmin(2))

96 fprintf( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n’)
97

98 % Extract optimal parameters.

99 opt_alpha_KF = xmin(1);

100 opt_beta_KF = xmin(2);

101

102 % Compute shank angle.

103 pitch_KF_right_shank = gw.fusion_KF( ...

104 g_Y_right_shank_1_C, pitch_acc_right_shank, ...

105 f, var(pitch_acc_right_shank), ...

106 var(pitch_acc_right_shank),...

107 var(g_Y_right_shank_1_C), opt_alpha_KF, ...

108 opt_beta_KF, pitch_acc_right_shank(1));

109

110 % ---EXTENDED KALMAN FILTER----------------------------

111

112 % Set initial value of parameters.

113 p0 = [3.5, 30, 30, 300, 0.001, 0.05];

114

115 % Call the optimization routine.

116 [pmin, fmin, ct] = gw.optimize_EKF( ...

117 g_Y_right_thigh_1_C(n1:n2)’, ...

118 g_Y_right_shank_1_C(n1:n2)’, ...

119 a_X_right_thigh_1_C(n1:n2)’, ...

120 a_Z_right_thigh_1_C(n1:n2)’, ...

121 a_X_right_shank_1_C(n1:n2)’, ...

122 a_Z_right_shank_1_C(n1:n2)’, ...

123 f, 0.35, 0.25, ...

124 [pitch_QS_right_thigh(n1:n2); ...

125 pitch_QS_right_shank(n1:n2)] ...

126 - 90, p0, rmse_offset);

127

128 fprintf( ’−−−−−−−−−−−−−EKF OPTIMISATION−−−−−−−−−−−−\n’);
129 fprintf([ ’The optimisation process finished in %d ’, ...

130 ’ iterations .\n’], ct);

131 fprintf( ’The minimum RMSE found is : %0.4f\n’, fmin);

132 fprintf([ ’Optimal parameters are : \n −sigma_t1 : ’, ...

133 ’%0.4f\n −sigma_t2 : %0.4f\n −sigma_b: ’, ...

134 ’%0.4f\n −sigma_s_1 : %0.4f\n −sigma_s_2 : ’, ...

135 ’ %0.4f ’], pmin);

136 fprintf( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n’)
137 %%

138 % Compute pitch angles with extended Kalman filter.

139 % Additionally, store the internal state vector at each

140 % time step in x, the motion based acceleration in a_m,

141 % and the angle estimate theta_1 + theta_2, based on
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142 % the corrected acceleration signal in theta12_c.

143 [pitch_EKF_right_thigh, pitch_EKF_right_shank, ...

144 theta12_c, a_m, x, par] = fusion_EKF( ...

145 g_Y_right_thigh_1_C’, ...

146 g_Y_right_shank_1_C’, ...

147 a_X_right_thigh_1_C’, ...

148 a_Z_right_thigh_1_C’, ...

149 a_X_right_shank_1_C’, ...

150 a_Z_right_shank_1_C’, ...

151 f, 0.35, 0.25, pmin);

152

153 save ( ’Data_1/pmin_1 ’, ’pmin’)
154 save ( ’Data_1/p0_1 ’, ’p0 ’)
155 save ( ’Data_1/parameters_1 ’, ’par ’)
156

157 %% 3) Plot results \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

158 % -----------------------------------------------------

159

160 % Plot: Thigh angle estimate - acceleration-based,

161 % KF, and EKF.

162 figure(n);

163 hold on;

164 plot(time(n1:n2), pitch_QS_right_thigh(n1:n2) - 90, ...

165 ’ linewidth ’, 1);

166 plot(time(n1:n2), pitch_acc_right_thigh(n1:n2) - 90);

167 plot(time(n1:n2), pitch_KF_right_thigh(n1:n2) - 90, ...

168 time(n1:n2), pitch_EKF_right_thigh(n1:n2), ...

169 ’ linewidth ’, 1);

170

171 xlabel( ’Time $t$ in s ’, ’ interpreter ’, ’ latex ’);
172 ylabel([ ’ Pitch angle $\theta_1$ in ’, ...

173 ’$^{\circ }$ ’], ’ interpreter ’, ’ latex ’);
174 legend( ’Reference ’, ’Accelerometer−based ’, ...

175 ’Kalman f i l t e r ’, ’Extended Kalman f i l t e r ’, ...

176 ’Location ’, ’northwest ’);
177 legend( ’boxoff ’);
178

179 if tikz

180 matlab2tikz([ ’ . ./ tikz/experiment_ ’, num2str(n), ...

181 ’ . tikz ’], ’height ’, ’\figureheight ’, ...

182 ’width ’, ’\figurewidth ’);
183 end

184

185 n = n + 1;

186

187 % Plot: Shank angle estimate - acceleration-based,

188 % KF, and EKF.

189 figure(n);

190 hold on;

191 plot(time(n1:n2), pitch_QS_right_shank(n1:n2) - 90, ...

192 ’ linewidth ’, 1);

193 plot(time(n1:n2), pitch_acc_right_shank(n1:n2)-90);
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194 plot(time(n1:n2), pitch_KF_right_shank(n1:n2)-90, ...

195 time(n1:n2), pitch_EKF_right_thigh(n1:n2) ...

196 + pitch_EKF_right_shank(n1:n2), ’ linewidth ’, 1);

197

198 xlabel( ’Time $t$ in s ’, ’ interpreter ’, ’ latex ’);
199 ylabel([ ’ Pitch angle $\theta_1 + \theta_2$ in ’, ...

200 ’$^{\circ }$ ’], ’ interpreter ’, ’ latex ’);
201 legend( ’Reference ’, ’Accelerometer−based ’, ...

202 ’Kalman f i l t e r ’, ’Extended Kalman f i l t e r ’, ...

203 ’Location ’, ’southwest ’);
204 legend( ’boxoff ’);
205

206 if tikz

207 matlab2tikz([ ’ . ./ tikz/experiment_ ’, num2str(n), ...

208 ’ . tikz ’], ’height ’, ’\figureheight ’, ...

209 ’width ’, ’\figurewidth ’);
210 end

211

212 n = n + 1;

213

214 % Compute root-mean-square error.

215 % -Thigh

216 RMSE_acc = sqrt(mean((pitch_QS_right_thigh(n1:n2) ...

217 - pitch_acc_right_thigh(n1:n2)’).^2));

218 RMSE_KF = sqrt(mean((pitch_QS_right_thigh(n1:n2) ...

219 - pitch_KF_right_thigh(n1:n2)’).^2));

220 RMSE_EKF = sqrt(mean((pitch_QS_right_thigh(n1:n2) ...

221 - 90 - pitch_EKF_right_thigh(n1:n2)).^2));

222 RMSE = [RMSE_acc, RMSE_KF, RMSE_EKF];

223 % -Shank

224 RMSE_acc = sqrt(mean((pitch_QS_right_shank(n1:n2) ...

225 - pitch_acc_right_shank(n1:n2)’).^2));

226 RMSE_KF = sqrt(mean((pitch_QS_right_shank(n1:n2) ...

227 - pitch_KF_right_shank(n1:n2)’).^2));

228 RMSE_EKF = sqrt(mean((pitch_QS_right_shank(n1:n2) ...

229 - 90 - pitch_EKF_right_thigh(n1:n2) ...

230 - pitch_EKF_right_shank(n1:n2)).^2));

231 RMSE = [RMSE; RMSE_acc, RMSE_KF, RMSE_EKF;];

232

233 % Compute sum of seperate RMSEs.

234 RMSE = [RMSE; RMSE(1, 1) + RMSE(2, 1), RMSE(1, 2) + ...

235 RMSE(2, 2), RMSE(1, 3) + RMSE(2, 3)];

236

237 % Plot bar graph and values on top of the bars.

238 figure(n);

239 b = bar(RMSE, 0.3);

240 offset = 0.8;

241 yb = cat(1, b.YData);

242 xb = bsxfun(@plus, b(1).XData, [b.XOffset]’);

243 hold on;

244

245 for i = 1:3
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246 for j = 1:3

247 text(xb(j, i), yb(j, i) + offset, ...

248 [ ’\scriptsize ’, num2str(RMSE(i, j), ...

249 ’$%0.2f$ ’)], ’ rotation ’, 0, ...

250 ’ interpreter ’, ’ latex ’, ...

251 ’HorizontalAlignment ’, ’ center ’);
252 end

253 end

254

255 b(1).FaceColor = [0.8500 0.3250 0.0980];

256 b(2).FaceColor = [0.9290 0.6940 0.1250];

257 b(3).FaceColor = [0.4940 0.1840 0.5560];

258

259 ylim([0, max(max(RMSE)) + 2]);

260 ylabel( ’Root−mean−square error in $^{\circ }$ ’, ...

261 ’ interpreter ’, ’ latex ’);
262

263 labels = { ’Thigh ’, ’Shank’, ’Thigh + Shank’};
264 format_ticks(gca, labels, [], [], [], 0);

265

266 legend( ’Acceleration−based ’, ’Kalman f i l t e r ’, ...

267 ’Extended Kalman f i l t e r ’, ...

268 ’Location ’, ’northwest ’);
269 legend( ’boxoff ’);
270

271 if tikz

272 matlab2tikz([ ’ . ./ tikz/experiment_ ’, num2str(n), ...

273 ’ . tikz ’], ’height ’, ’\figureheight ’, ...

274 ’width ’, ’\figurewidth ’);
275 end

276

277 n = n + 1;

278

279 % Plot: Acceleration-based pitch angle shank - corrected.

280 n1 = 4 * f + 1;

281 n2 = 20 * f;

282 figure(n);

283 hold on;

284 plot(time(n1:n2), pitch_QS_right_shank(n1:n2) - 90, ...

285 ’ linewidth ’, 1);

286 plot(time(n1:n2), pitch_acc_right_shank(n1:n2) - 90);

287 plot(time(n1:n2), theta12_c(n1:n2), ’ linewidth ’, 1);

288

289 xlabel( ’Time $t$ in s ’, ’ interpreter ’, ’ latex ’);
290 ylabel([ ’ Pitch angle $\theta_1 + \theta_2$ in ’, ...

291 ’$^{\circ }$ ’], ’ interpreter ’, ’ latex ’);
292 legend( ’Reference ’, ’Accelerometer−based ’, ...

293 ’Accelerometer based − corrected ’, ...

294 ’Location ’, ’southwest ’);
295 legend( ’boxoff ’);
296

297 % Compute root-mean-square error.
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298 RMSE_acc = sqrt(mean((pitch_QS_right_shank(n1:n2) ...

299 - pitch_acc_right_shank(n1:n2)’).^2));

300 RMSE_acc_corr = sqrt(mean((pitch_QS_right_shank(n1:n2)...

301 - 90 - theta12_c(n1:n2)).^2));

302 RMSE_acc = [RMSE_acc, RMSE_acc_corr];

303

304 if tikz

305 matlab2tikz([ ’ . ./ tikz/experiment_ ’, num2str(n), ...

306 ’ . tikz ’], ’height ’, ’\figureheight ’, ...

307 ’width ’, ’\figurewidth ’);
308 end

309

310 %% 3) Display results \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

311 % -----------------------------------------------------

312

313 fprintf( ’−−−−−−−−−−−−−−−−−Results−−−−−−−−−−−−−−−\n’);
314 fprintf([ ’AB:\n RMSE_thigh: %0.4f\n RMSE_shank: ’, ...

315 ’%0.4f\n RMSE_sum: %0.4f\n\n’], RMSE(:, 1));

316 fprintf([ ’KF:\n RMSE_thigh: %0.4f\n RMSE_shank: ’, ...

317 ’%0.4f\n RMSE_sum: %0.4f\n\n’], RMSE(:, 2));

318 fprintf([ ’EKF:\n RMSE_thigh: %0.4f\n RMSE_shank: ’, ...

319 ’%0.4f\n RMSE_sum: %0.4f\n\n’], RMSE(:, 3));

320 fprintf([ ’Improvement:\n’, ...

321 ’RMSE_SUM_EKF / RMSE_SUM_KF: %0.4f\n\n’], ...

322 RMSE(3, 3) / RMSE(3, 2));

323 fprintf([ ’Acceleration correction:\n’, ...

324 ’RMSE_Acc / RMSE_Acc_corr: %0.4f\n\n’], ...

325 RMSE_acc(2) / RMSE_acc(1));

326 fprintf([ ’EKF parameters : \n −sigma_d_sq : ’, ...

327 ’%0.4f\n −sigma_t1_sq : ’, ...

328 ’%0.4f\n −sigma_t2_sq : ’, ...

329 ’%0.4f\n −sigma_b_sq : ’, ...

330 ’%0.4f\n −sigma_1_sq : ’, ...

331 ’%0.4f\n −sigma_2_sq : ’, ...

332 ’%0.4f\n −sigma_s3_sq : ’, ...

333 ’%0.4f\n −sigma_f3_sq : ’, ...

334 ’%0.4f\n −sigma_s4_sq : ’, ...

335 ’%0.4f\n −sigma_f4_sq : ’, ...

336 ’%0.4f\n’], par);

337 fprintf( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n’);
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